Andriani H. Birth weight and childhood obesity: effect modification by residence and household wealth. Emerg Themes Epidemiol. 2021. https://doi.org/10.1186/s12982-021-00096-2.
Article PubMed PubMed Central Google Scholar
Ntenda PAM. Association of low birth weight with undernutrition in preschool-aged children in Malawi. Nutr J. 2019;18(1):51. https://doi.org/10.1186/s12937-019-0477-8.
Article PubMed PubMed Central Google Scholar
Woldeamanuel GG, Geta TG, Mohammed TP, Shuba MB, Bafa TA. Effect of nutritional status of pregnant women on birth weight of newborns at Butajira Referral Hospital, Butajira, Ethiopia. SAGE Open Med. 2019;7:2050312119827096. https://doi.org/10.1177/2050312119827096.
Article PubMed PubMed Central Google Scholar
Forgie AJ, Drall KM, Bourque SL, Field CJ, Kozyrskyj AL, Willing BP. The impact of maternal and early life malnutrition on health: a diet-microbe perspective. BMC Med. 2020;18(1):135. https://doi.org/10.1186/s12916-020-01584-z.
Article PubMed PubMed Central Google Scholar
Hussain Z, Borah MD. Nutritional status prediction in neonate using machine learning techniques: a comparative study. In: Bhattacharjee A, Borgohain SK, Soni B, Verma G, Gao X-Z, editors. Machine learning image processing network security and data sciences. Singapore: Springer; 2020. p. 69–83. https://doi.org/10.1007/978-981-15-6318-8_7.
Garcia Rincon LJ, Alencar GP, Cardoso MA, Narvai PC, Frazão P. Effect of birth weight and nutritional status on transverse maxillary growth: implications for maternal and infant health. PLoS ONE. 2020;15(1):1–12. https://doi.org/10.1371/journal.pone.0228375.
Aboagye RG, Ahinkorah BO, Seidu A-A, Frimpong JB, Archer AG, Adu C, Hagan JE Jr, Amu H, Yaya S. Birth weight and nutritional status of children under five in Sub-Saharan Africa. PLoS ONE. 2022;17(6):1–19. https://doi.org/10.1371/journal.pone.0269279.
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: a narrative review. Nutrients. 2020. https://doi.org/10.3390/nu12123900.
Article PubMed PubMed Central Google Scholar
Bhowmik B, Siddique T, Majumder A, Mdala I, Hossain IA, Hassan Z, Jahan I, Moreira NCDV, Alim A, Basit A, Hitman GA, Khan AKA, Hussain A. Maternal BMJ and nutritional status in early pregnancy and its impact on neonatal outcomes at birth in Bangladesh. BMC Pregnancy Childbirth. 2019;19(1):413. https://doi.org/10.1186/s12884-019-2571-5.
Article CAS PubMed PubMed Central Google Scholar
Do HJ, Moon KM, Jin HS. Machine learning models for predicting mortality in 7472 very low birth weight infants using data from a nationwide neonatal network. Diagnostics. 2022. https://doi.org/10.3390/diagnostics12030625.
Article PubMed PubMed Central Google Scholar
Islam Pollob SMA, Abedin MM, Islam MT, Islam MM, Maniruzzaman M. Predicting risks of low birth weight in Bangladesh with machine learning. PLoS ONE. 2022;17(5):1–12. https://doi.org/10.1371/journal.pone.0267190.
Song IG, Kim H-S, Cho Y-M, Lim Y-N, Moon D-S, Shin SH, Kim E-K, Park J, Shin JE, Han J, Eun HS. Association between birth weight and neurodevelopmental disorders assessed using the Korean national health insurance service claims data. Sci Rep. 2022;12(1):2080. https://doi.org/10.1038/s41598-022-06094-x.
Article ADS CAS PubMed PubMed Central Google Scholar
Zeng P, Zhou X. Causal association between birth weight and adult diseases: evidence from a mendelian randomization analysis. Front Genet. 2019. https://doi.org/10.3389/fgene.2019.00618.
Article PubMed PubMed Central Google Scholar
Sharma V, Sharma V, Khan A, Wassmer DJ, Schoenholtz MD, Hontecillas R, Bassaganya-Riera J, Zand R, Abedi V. Malnutrition, health and the role of machine learning in clinical setting. Front Nutr. 2020. https://doi.org/10.3389/fnut.2020.00044.
Article PubMed PubMed Central Google Scholar
Kirk D, Catal C, Tekinerdogan B. Precision nutrition: a systematic literature review. Comput Biol Med. 2021;133: 104365. https://doi.org/10.1016/j.compbiomed.2021.104365.
Raphaeli O, Singer P. Towards personalized nutritional treatment for malnutrition using machine learning-based screening tools. Clin Nutr. 2021;40(10):5249–51. https://doi.org/10.1016/j.clnu.2021.08.013.
Hussain Z, Borah MD. Birth weight prediction of new born baby with application of machine learning techniques on features of mother. J Stat Manag Syst. 2020;23(6):1079–91. https://doi.org/10.1080/09720510.2020.1814499.
Talukder A, Ahammed B. Machine learning algorithms for predicting malnutrition among under-five children in Bangladesh. Nutrition. 2020;78: 110861. https://doi.org/10.1016/j.nut.2020.110861.
Khan W, Zaki N, Masud MM, Ahmad A, Ali L, Ali N, Ahmed LA. Infant birth weight estimation and low birth weight classification in united Arab emirates using machine learning algorithms. Sci Rep. 2022;12(1):12110. https://doi.org/10.1038/s41598-022-14393-6.
Article ADS CAS PubMed PubMed Central Google Scholar
Fenta HM, Zewotir T, Muluneh EK. A machine learning classifier approach for identifying the determinants of under-five child undernutrition in Ethiopian administrative zones. BMC Med Inform Decis Mak. 2021;21(1):291. https://doi.org/10.1186/s12911-021-01652-1.
Article PubMed PubMed Central Google Scholar
Bekele WT. Machine learning algorithms for predicting low birth weight in Ethiopia. BMC Med Inform Decis Mak. 2022;22(1):232. https://doi.org/10.1186/s12911-022-01981-9.
Article PubMed PubMed Central Google Scholar
Sousa CM, Santana E, Lopes MV, Lima G, Azoubel L, Carneiro E, Barros AK, Pires N. Development of a computational model to predict excess body fat in adolescents through low cost variables. Int J Environ Res Public Health. 2019. https://doi.org/10.3390/ijerph16162962.
Article PubMed PubMed Central Google Scholar
Wei J, Fan L, Zhang Y, Li S, Partridge J, Claytor L, Sulo S. Association between malnutrition and depression among community-dwelling older Chinese adults. Asia Pac J Public Health. 2018;30(2):107–17. https://doi.org/10.1177/1010539518760632.
Sgkdddd B-GBSW. Association of birth weight with type 2 diabetes and glycemic traits: a mendelian randomization study. JAMA Netw Open. 2019;2(9):1910915–1910915. https://doi.org/10.1001/jamanetworkopen.2019.10915.
Riad A, Knight SR, Ghosh D, Kingsley PA, Lapitan MC, Parreno-Sacdalan MDEA. Impact of malnutrition on early outcomes after cancer surgery: an international, multicentre, prospective cohort study. Lancet Global Health. 2023;11(3):341–9. https://doi.org/10.1016/S2214-109X(22)00550-2.
Sousa-Catita D, Ferreira-Santos C, Mascarenhas P, Oliveira C, Madeira R, Santos CA, André C, Godinho C, Antunes L, Fonseca J. Malnutrition, cancer stage and gastrostomy timing as markers of poor outcomes in gastrostomy-fed head and neck cancer patients. Nutrients. 2023. https://doi.org/10.3390/nu15030662.
Article PubMed PubMed Central Google Scholar
Tchoumi SY, Njintang NY, Kamgang JC, Tchuenche JM. Malaria and malnutrition in children: a mathematical model. Franklin Open. 2023;3: 100013. https://doi.org/10.1016/j.fraope.2023.100013.
Hussain Z, Borah MD. Nicov: a model to analyse impact of nutritional status and immunity on COVID-19. Med Biol Eng Comput. 2022;60(5):1481–96. https://doi.org/10.1007/s11517-022-02545-9.
Article PubMed PubMed Central Google Scholar
Hussain Z, Borah MD. Predicting mental health and nutritional status from social media profile using deep learning. In: Hong T-P, Serrano-Estrada L, Saxena A, Biswas A, editors. Deep learning for social media data analytics. Cham: Springer; 2022. p. 177–93.
Jana A, Dey D, Ghosh R. Contribution of low birth weight to childhood undernutrition in India: evidence from the national family health survey 2019–2021. BMC Public Health. 2023;23(1):1336. https://doi.org/10.1186/s12889-023-16160-2.
Article PubMed PubMed Central Google Scholar
Bianchi ME, Restrepo JM. Low birthweight as a risk factor for non-communicable diseases in adults. Front Med. 2022. https://doi.org/10.3389/fmed.2021.793990.
Bernhardsen GP, Stensrud T, Hansen BH, Steene-Johannesen J, Kolle E, Nystad W, Anderssen SA, Hallal PC, Janz KF, Kriemler S, Andersen LB, Northstone K, Resaland GK, Sardinha LB, van Sluijs EMF, Ried-Larsen M, Ekelund U. Birth weight, cardiometabolic risk factors and effect modification of physical activity in children and adolescents: pooled data from 12 international studies. Int J Obes. 2020;44(10):2052–63. https://doi.org/10.1038/s41366-020-0612-9.
Doorduijn AS, de van der Schueren MAE, van de Rest O, de Leeuw FA, Hendriksen HMA, Teunissen CE, Scheltens P, van der Flier WM, Visser M. Nutritional status is associated with clinical progression in alzheimer’s disease: the nudad project. J Am Med Direct Assoc. 2023;24(5):638–6441. https://doi.org/10.1016/j.jamda.2020.10.020.
Schneider EB. The effect of nutritional status on historical infectious disease morbidity: evidence from the London foundling hospital, 1892–1919. Hist Fam. 2023;28(2):198–228. https://doi.org/10.1080/1081602X.2021.2007499.
Borah MD, Hussain Z. Ein System zur Analyse der Auswirkungen des Geburtsgewichts Auf Krankheitsspezifische Folgen des Ernährungszustands. 202022101981.9, German Patent and Trade Mark Office 2022. https://register.dpma.de/DPMAregister/pat/register?AKZ=2020221019819
Hussain Z, Borah MD. Child birth weight dataset IEEE Dataport. 2022. https://doi.org/10.21227/dvd4-3232.
Comments (0)