From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine

Siegal R, Miller KD, Jemal AJCCJC. Cancer statistics, 2012. CA Cancer J Clin. 2014;64(1):9–29.

Google Scholar 

Van Toom EE, Verdone JE, Pienta KJ. Disseminated tumor cells and dormancy in prostate cancer metastasis. Curr Opin Biotechnol. 2016;40:9–15.

Article  Google Scholar 

Beerenwinkel N, et al. Genetic progression and the waiting time to cancer. PLoS Comput Biol. 2007;3(11): e225.

Article  MathSciNet  Google Scholar 

Liu W, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559–65.

Article  Google Scholar 

Lin Y, et al. Multivariate competing endogenous RNA network characterization for cancer microRNA biomarker discovery: a novel bioinformatics model with application to prostate cancer metastasis. Precis Clin Med. 2022;5(1):pbac001.

Article  MathSciNet  Google Scholar 

Sathianathen NJ, et al. Landmarks in prostate cancer. Nat Rev Urol. 2018;15(10):627–42.

Article  Google Scholar 

Etzioni R, et al. Asymptomatic incidence and duration of prostate cancer. Am J Epidemio. 1998;148(8):775–85.

Article  Google Scholar 

Zhang E, et al. An overview of advances in multi-omics analysis in prostate cancer. Life Sci. 2020;260: 118376.

Article  Google Scholar 

del Flores-Téllez NJT, Baena EJCL. Experimental challenges to modeling prostate cancer heterogeneity. Cancer Lett. 2022;524:194–205.

Article  Google Scholar 

Hoang LT, et al. Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in non-small-cell lung cancer. Mol Oncol. 2019;13(11):2406–21.

Article  Google Scholar 

Luo X, et al. Integration of metabolomic and transcriptomic data reveals metabolic pathway alteration in breast cancer and impact of related signature on survival. J Cell Physiol. 2019;234(8):13021–31.

Article  Google Scholar 

Stranger BE, Stahl EA, Raj TJG. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics. 2011;187(2):367–83.

Article  Google Scholar 

Dong J. Intelligent medicine, the wings of global health. Intell Med. 2021;1(1):1–2.

Article  Google Scholar 

Litwin MS, Tan H-JJJ. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532–42.

Article  Google Scholar 

Fontana F, et al. Gonadotropin-releasing hormone receptors in prostate cancer: molecular aspects and biological functions. Mol Sci. 2020;21(24):9511.

Article  Google Scholar 

Crawford ED, et al. Androgen-targeted therapy in men with prostate cancer: evolving practice and future considerations. Prostate Cancer Prostatic Dis. 2019;22(1):24–38.

Article  Google Scholar 

Yamada S, et al. Prognostic impact of dose reduction in androgen receptor pathway inhibitors for castration-resistant prostate cancer. Prostate Int. 2022;10(1):50–5.

Article  Google Scholar 

Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15(5):271–86.

Article  Google Scholar 

Niu Y, et al. ADT with antiandrogens in prostate cancer induces adverse effect of increasing resistance, neuroendocrine differentiation and tumor metastasis. Cancer Lett. 2018;439:47–55.

Article  Google Scholar 

Manucha V, Henegan J. Clinicopathologic diagnostic approach to aggressive variant prostate cancer. Arch Pathol Lab Med. 2020;144(1):18–23.

Article  Google Scholar 

Wang Y, et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18(10):581–96.

Article  Google Scholar 

Buyyounouski MK, et al. Prostate cancer–major changes in the American Joint Committee on Cancer eight edition staging manual. Cancer J Clin. 2017;67(3):245–53.

Article  Google Scholar 

Martin NE, et al. Prognostic determinants in prostate cancer. Cancer J. 2011;17(6):429.

Article  Google Scholar 

Isaacs JT. Antagonistic effect of androgen on prostatic cell death. Prostate. 1984;5(5):545–57.

Article  Google Scholar 

Lamont KR, Tindall DJ. Androgen regulation of gene expression. Adv Cancer Res. 2010;107:137–62.

Article  Google Scholar 

Chandrasekar T, et al. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol. 2015;4(3):365.

Google Scholar 

Wang Z, et al. The diverse roles of SPOP in prostate cancer and kidney cancer. Nat Rev Urol. 2020;17(6):339–50.

Article  Google Scholar 

Dai X, Wang Z, Wei W. SPOP-mediated degradation of BRD4 dictates cellular sensitivity to BET inhibitors. Cell Cycle. 2017;16(24):2326–9.

Article  Google Scholar 

Gerhardt J, et al. FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 2012;180(2):848–61.

Article  Google Scholar 

Kang S-W, et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell. 2006;127(5):999–1013.

Article  Google Scholar 

Armenia J, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50(5):645–51.

Article  Google Scholar 

Fontana F, Anselmi M, Limonta P. Molecular mechanisms and genetic alterations in prostate cancer: from diagnosis to targeted therapy. Cancer Lett. 2022;534:215619.

Article  Google Scholar 

Tong D. Unravelling the molecular mechanisms of prostate cancer evolution from genotype to phenotype. Crit Rev Oncol Hematol. 2021;163: 103370.

Article  Google Scholar 

Tolkach Y, Kristiansen GJP. The heterogeneity of prostate cancer: a practical approach. Pathobiology. 2018;85(1–2):108–16.

Article  Google Scholar 

Niu Y, et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene. 2010;29(25):3593–604.

Article  Google Scholar 

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94.

Article  Google Scholar 

Puranik AD, et al. Target heterogeneity in oncology: the best predictor for differential response to radioligand therapy in neuroendocrine tumors and prostate cancer. Cancers. 2021;13(14):3607.

Article  Google Scholar 

Hirano D, et al. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Oncol. 2004;45(5):586–92.

Google Scholar 

Aggarwal R, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36(24):2492.

Article  Google Scholar 

Jamal-Hanjani M, et al. Translational implications of tumor heterogeneity. Clin Cancer Res. 2015;21(6):1258–66.

Article  Google Scholar 

Abeshouse A, et al. The molecular taxonomy of primary prostate cancer. Cell. 2015;163(4):1011–25.

Article  Google Scholar 

Robinson D, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28.

Article  Google Scholar 

van Dessel LF, et al. The genomic landscape of metastatic castration-resistant prostate cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun. 2019;10(1):1–13.

Google Scholar 

Ren S, et al. Whole-genome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol. 2018;73(3):322–39.

Article  Google Scholar 

Blackburn J, et al. TMPRSS2-ERG fusions linked to prostate cancer racial health disparities: a focus on Africa. Prostate. 2019;79(10):1191–6.

Article  Google Scholar 

Stamatiou KN, et al. The phenomenon of multifocality does not affect the biologic behavior of histologic prostate carcinoma. Med Sci Monit. 2009;15(2):BR61–3.

Google Scholar 

Arora R, et al. Heterogeneity of Gleason grade in multifocal adenocarcinoma of the prostate. Int J Am Cancer Soc. 2004;100(11):2362–6.

Google Scholar 

Mehra R, et al. Heterogeneity of TMPRSS2 gene rearrangements in multifocal prostate adenocarcinoma: molecular evidence for an independent group of diseases. Cancer Res. 2007;67(17):7991–5.

Article  Google Scholar 

Andreoiu M, Cheng LJH. Multifocal prostate cancer: biologic, prognostic, and therapeutic implications. Hum Pathol. 2010;41(6):781–93.

Article  Google Scholar 

Suzuki H, et al. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998;58(2):204–9.

Google Scholar 

Mundbjerg K, et al. Identifying aggressive prostate cancer foci using a DNA methylation classifier. Genome Biol. 2017;18(1):1–15.

Article  Google Scholar 

Dedigama-Arachchige P, et al. Clonal evaluation of prostate cancer molecular heterogeneity in biopsy samples by dual immunohistochemistry and dual RNA in situ hybridization. Mod Pathol. 2020;33(9):1791–801.

Article  Google Scholar 

Lu Z, et al. Clonal evaluation of early onset prostate cancer by expression profiling of ERG, SPINK1, ETV1, and ETV4 on whole-mount radical prostatectomy tissue. Prostate. 2020;80(1):38–50.

Article  Google Scholar 

Haffner MC, et al. Tracking the clonal origin of lethal prostate cancer. J Clin Investig. 2013;123(11):4918–22.

Article  Google Scholar 

Van Etten JL, Dehm SM. Clonal origin and spread of metastatic prostate cancer. Endocr Relat Cancer. 2016;23(4):R207–17.

Article  Google Scholar 

Boutros PC, et al. Spatial genomic heterogeneity within localized, multifocal prostate cancer. Nat Genet. 2015;47(7):736–45.

Article  Google Scholar 

Brocks D, et al. Intratumor DNA methylation heterogeneity refl

Comments (0)

No login
gif