Anadón A, Ares I, Martínez M, Martínez-Larrañaga MR, Martínez MA (2020) Volume 4. Neurotoxicity of neonicotinoids. In: Aschner M, Costa LG (eds) Advances in neurotoxicology. Elsevier, San Diego, pp 167–207. doi: https://doi.org/10.1016/bs.ant.2019.11.005
Bouzat C, Lasala M, Nielsen BE, Corradi J, Esandi MDC (2018) Molecular function of α7 nicotinic receptors as drug targets. J Physiol 596:1847–1861. https://doi.org/10.1113/JP275101
Article CAS PubMed Google Scholar
Broide RS, Leslie FM (1999) The alpha7 nicotinic acetylcholine receptor in neuronal plasticity. Mol Neurobiol 20:1–16. https://doi.org/10.1007/BF02741361
Article CAS PubMed Google Scholar
Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattellem DB (2006) Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J Neurochem 99:608–615. https://doi.org/10.1111/j.1471-4159.2006.04084.x
Article CAS PubMed Google Scholar
Caron-Beaudoin É, Viau R, Sanderson JT (2018) Effects of neonicotinoid pesticides on promoter-specific aromatase (CYP19) expression in Hs578t breast cancer cells and the role of the VEGF pathway. Environ Health Perspect 126:047014. https://doi.org/10.1289/EHP2698
Article PubMed PubMed Central Google Scholar
Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Léna C, Le Novère N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Rev 26:198–216. https://doi.org/10.1016/s0165-0173(97)00040-4
Article CAS PubMed Google Scholar
Changeux JP, Corringer PJ, Maskos U (2015) The nicotinic acetylcholine receptor: from molecular biology to cognition. Neuropharmacology 96:135–136. https://doi.org/10.1016/j.neuropharm.2015.03.024
Article CAS PubMed Google Scholar
Chao SL, Casida JE (1997) Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pestic Biochem Physiol 58:77–88. https://doi.org/10.1006/pest.1997.2284
Dajas-Bailador FA, Mogg AJ, Wonnacott S (2002) Intracellular Ca2 + signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2 + channels and Ca2 + stores. J Neurochem 81:606–614. https://doi.org/10.1046/j.1471-4159.2002.00846.x
Article CAS PubMed Google Scholar
Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflug Arch 464:111–121. https://doi.org/10.1007/s00424-012-1112-0
Ermak G, Davies KJ (2002) Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713–721. https://doi.org/10.1016/s0161-5890(01)00108-0
Article CAS PubMed Google Scholar
Filadi R, Theurey P, Pizzo P (2017) The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium 62:1–15. https://doi.org/10.1016/j.ceca.2017.01.003
Article CAS PubMed Google Scholar
Foucault-Fruchard L, Antier D (2017) Therapeutic potential of α7 nicotinic receptor agonists to regulate neuroinflammation in neurodegenerative diseases. Neural Regen Res 12:1418–1421
Article CAS PubMed PubMed Central Google Scholar
Gharpure A, Noviello CM, Hibbs RE (2020) Progress in nicotinic receptor structural biology. Neuropharmacology 171:108086. https://doi.org/10.1016/j.neuropharm.2020.108086
Article CAS PubMed PubMed Central Google Scholar
Gotti C, Moretti M, Gaimarri A, Zanardi A, Clementi F, Zoli M (2007) Heterogeneity and complexity of native brain nicotinic receptors. Biochem Pharmacol 74:1102–1111. https://doi.org/10.1016/j.bcp.2007.05.023
Article CAS PubMed Google Scholar
Grillo MA, Grillo SL, Gerdes BC, Kraus JG, Koulen P (2019) Control of neuronal ryanodine receptor-mediated calcium signaling by calsenilin. Mol Neurobiol 56:525–534. https://doi.org/10.1007/s12035-018-1080-2
Article CAS PubMed Google Scholar
Groot Kormelink PJ, Luyten WHML (1997) Cloning and sequence of full-length cDNAs encoding the human neuronal nicotinic acetylcholine receptor (nAChR) subunits β3 and β4 and expression of seven nAChR subunits in the human neuroblastoma cell line SH-SY5Y and/or IMR-321The nucleotide sequence data for nAChR subunits α3,4,5,7 and β2,3,4 were deposited in the EMBL, GenBank and DDBJ Nucleotide sequence. FEBS Lett 400:309–314. https://doi.org/10.1016/s0014-5793(96)01383-x
Article CAS PubMed Google Scholar
Hajiasgharzadeh K, Sadigh-Eteghad S, Mansoori B, Mokhtarzadeh A, Shanehbandi D, Doustvandi MA, Asadzadeh Z, Baradaran B (2019) Alpha7 nicotinic acetylcholine receptors in lung inflammation and carcinogenesis: friends or foes? J Cell Physiol 234:14666–14679. https://doi.org/10.1002/jcp.28220
Article CAS PubMed Google Scholar
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B (2020) The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 6:e03611. https://doi.org/10.1016/j.heliyon.2020.e03611
Article CAS PubMed PubMed Central Google Scholar
Hirai A, Sugio S, Nimako C, Nakayama SMM, Kato K, Takahashi K, Arizono K, Hirano T, Hoshi N, Fujioka K, Taira K, Ishizuka M, Wake H, Ikenaka Y (2022) Ca2 + imaging with two-photon microscopy to detect the disruption of brain function in mice administered neonicotinoid insecticides. Sci Rep 12:5114. https://doi.org/10.1038/s41598-022-09038-7
Article ADS CAS PubMed PubMed Central Google Scholar
Ho TNT, Abraham N, Lewis RJ (2020) Structure-function of neuronal nicotinic acetylcholine receptor inhibitors derived from natural toxins. Front Neurosci 4:609005. https://doi.org/10.3389/fnins.2020.609005
Hyland C, Bradshaw PT, Gunier RB, Mora AM, Kogut K, Deardorff J, Sagiv SK, Bradman A, Eskenazi B (2021) Associations between pesticide mixtures applied near home during pregnancy and early childhood with adolescent behavioral and emotional problems in the CHAMACOS study. Environ Epidemiol 5:e150. https://doi.org/10.1097/EE9.0000000000000150
Article PubMed PubMed Central Google Scholar
Ichikawa G, Kuribayashi R, Ikenaka Y, Ichise T, Nakayama SMM, Ishizuka M, Taira K, Fujioka K, Sairenchi T, Kobashi G, Bonmatin JM, Yoshihara S (2019) LC-ESI/MS/MS analysis of neonicotinoids in urine of very low birth weight infants at birth. PLoS ONE 14:e0219208. https://doi.org/10.1371/journal
Article CAS PubMed PubMed Central Google Scholar
Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908. https://doi.org/10.1021/jf101303g
Article CAS PubMed Google Scholar
Kagawa N, Nagao T (2018) Neurodevelopmental toxicity in the mouse neocortex following prenatal exposure to acetamiprid. J Appl Toxicol 38:1521–1528. https://doi.org/10.1002/jat.3692
Article CAS PubMed Google Scholar
Koukouli F, Maskos U (2015) The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem Pharmacol 97:378–387. https://doi.org/10.1016/j.bcp.2015.07.018
Article CAS PubMed Google Scholar
Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21. https://doi.org/10.1007/978-1-62703-640-5_2
Article CAS PubMed PubMed Central Google Scholar
Lendvai B, Kassai F, Szájli A, Némethy Z (2013) α7 nicotinic acetylcholine receptors and their role in cognition. Brain Res Bull 93:86–96. https://doi.org/10.1016/j.brainresbull.2012.11.003
Article CAS PubMed Google Scholar
Livingstone PD, Srinivasan J, Kew JN, Dawson LA, Gotti C, Moretti M, Shoaib M, Wonnacott S (2009) alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur J Neurosci 29:539–550. https://doi.org/10.1111/j.1460-9568.2009.06613.x
Loser D, Grillberger K, Hinojosa MG, Blum J, Haufe Y, Danker T, Johansson Y, Möller C, Nicke A, Bennekou SH, Gardner I, Bauch C, Walker P, Forsby A, Ecker GF, Kraushaar U, Leist M (2021a) Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Arch Toxicol 95:3695–3716. https://doi.org/10.1007/s00204-021-03168-z
Article CAS PubMed PubMed Central Google Scholar
Loser D, Hinojosa MG, Blum J, Schaefer J, Brüll M, Johansson Y, Suciu I, Grillberger K, Danker T, Möller C, Gardner I, Ecker GF, Bennekou SH, Forsby A, Kraushaar U, Leist M (2021b) Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. Arch Toxicol 95:2081–2107. https://doi.org/10.1007/s00204-021-03031-1
Article CAS PubMed PubMed Central Google Scholar
Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodeg 4:20. https://doi.org/10.1186/1750-1326-4-20
Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955. https://doi.org/10.1038/nature01748
Comments (0)