The RNA-binding protein quaking is upregulated in nitrofen-induced congenital diaphragmatic hernia lungs at the end of gestation

Holder AM, Klaassens M, Tibboel D, de Klein A, Lee B, Scott DA (2007) Genetic factors in congenital diaphragmatic hernia. Am J Hum Genet 80:825–845. https://doi.org/10.1086/513442

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skari H, Bjornland K, Haugen G, Egeland T, Emblem R (2000) Congenital diaphragmatic hernia: a meta-analysis of mortality factors. J Pediatr Surg 35:1187–1197. https://doi.org/10.1053/jpsu.2000.8725

Article  CAS  PubMed  Google Scholar 

Zani A, Chung WK, Deprest J, Harting MT, Jancelewicz T, Kunisaki SM et al (2022) Congenital diaphragmatic hernia. Nat Rev Dis Primers 8:37. https://doi.org/10.1038/s41572-022-00362-w

Article  PubMed  Google Scholar 

Pober BR, Lin A, Russell M, Ackerman KG, Chakravorty S, Strauss B et al (2005) Infants with Bochdalek diaphragmatic hernia: sibling precurrence and monozygotic twin discordance in a hospital-based malformation surveillance program. Am J Med Genet A 138A(2):81–88. https://doi.org/10.1002/ajmg.a.30904

Article  PubMed  PubMed Central  Google Scholar 

Pereira-Terra P, Deprest JA, Kholdebarin R, Khoshgoo N, DeKoninck P, Munck AA et al (2015) Unique tracheal fluid microRNA signature predicts response to FETO in patients with congenital diaphragmatic hernia. Ann Surg 262:1130–1140. https://doi.org/10.1097/sla.0000000000001054

Article  PubMed  Google Scholar 

Khoshgoo N, Kholdebarin R, Pereira-Terra P, Mahood TH, Falk L, Day CA et al (2019) Prenatal microRNA miR-200b therapy improves nitrofen-induced pulmonary hypoplasia associated with congenital diaphragmatic hernia. Ann Surg 269:979–987. https://doi.org/10.1097/sla.0000000000002595

Article  PubMed  Google Scholar 

Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y et al (2012) MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann Surg Oncol 19(Suppl 3):S656–S664. https://doi.org/10.1245/s10434-012-2217-6

Article  PubMed  Google Scholar 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160:1125–1134. https://doi.org/10.1016/j.cell.2015.02.014

Article  CAS  PubMed  Google Scholar 

Kim EJ, Kim JS, Lee S, Lee H, Yoon JS, Hong JH et al (2019) QKI, a miR-200 target gene, suppresses epithelial-to-mesenchymal transition and tumor growth. Int J Cancer 145:1585–1595. https://doi.org/10.1002/ijc.32372

Article  CAS  PubMed  Google Scholar 

Ameis D, Liu F, Kirby E, Patel D, Keijzer R (2021) The RNA-binding protein quaking regulates multiciliated and basal cell abundance in the developing lung. Am J Physiol Lung Cell Mol Physiol 320:L557–L567. https://doi.org/10.1152/ajplung.00481.2019

Article  CAS  PubMed  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao L, Mandler MD, Yi H, Feng Y (2010) Quaking I controls a unique cytoplasmic pathway that regulates alternative splicing of myelin-associated glycoprotein. Proc Natl Acad Sci USA 107:19061–19066. https://doi.org/10.1073/pnas.1007487107

Article  ADS  PubMed  PubMed Central  Google Scholar 

de Bruin RG, Shiue L, Prins J, de Boer HC, Singh A, Fagg WS et al (2016) Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression. Nat Commun 7:10846. https://doi.org/10.1038/ncomms10846

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Li X, Sun C, Shi C, Hua D, Yu L et al (2017) Quaking-5 suppresses aggressiveness of lung cancer cells through inhibiting β-catenin signaling pathway. Oncotarget 8:82174–82184. https://doi.org/10.18632/oncotarget.19066

Article  PubMed  PubMed Central  Google Scholar 

Gu S, Chu C, Chen W, Ren H, Cao Y, Li X et al (2019) Prognostic value of epithelial-mesenchymal transition related genes: SLUG and QKI in breast cancer patients. Int J Clin Exp Pathol 12:2009–2021

CAS  PubMed  PubMed Central  Google Scholar 

Tili E, Chiabai M, Palmieri D, Brown M, Cui R, Fernandes C et al (2015) Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 6:24599–24610

Article  PubMed  PubMed Central  Google Scholar 

Suarez-Carmona M, Lesage J, Cataldo D, Gilles C (2017) EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 11:805–823. https://doi.org/10.1002/1878-0261.12095

Article  PubMed  PubMed Central  Google Scholar 

Wang L, Zhai DS, Ruan BJ, Xu CM, Ye ZC, Lu HY et al (2017) Quaking deficiency amplifies inflammation in experimental endotoxemia via the aryl hydrocarbon receptor/signal transducer and activator of transcription 1-NF-κB pathway. Front Immunol 8:1754. https://doi.org/10.3389/fimmu.2017.01754

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM et al (2019) MCT-1/miR-34a/IL-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer 18:42. https://doi.org/10.1186/s12943-019-0988-0

Article  PubMed  PubMed Central  Google Scholar 

Azam SH, Porrello A, Harrison EB, Leslie PL, Liu X, Waugh TA et al (2019) Quaking orchestrates a post-transcriptional regulatory network of endothelial cell cycle progression critical to angiogenesis and metastasis. Oncogene 38:5191–5210. https://doi.org/10.1038/s41388-019-0786-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khoshgoo N, Visser R, Falk L, Day CA, Ameis D, Iwasiow BM et al (2017) MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep 7:6382. https://doi.org/10.1038/s41598-017-05412-y

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chen YC, Statt S, Wu R, Chang HT, Liao JW, Wang CN et al (2016) High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep 6:18815. https://doi.org/10.1038/srep18815

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Bartis D, Mise N, Mahida RY, Eickelberg O, Thickett DR (2014) Epithelial–mesenchymal transition in lung development and disease: does it exist and is it important? Thorax 69:760–765. https://doi.org/10.1136/thoraxjnl-2013-204608

Article  PubMed  Google Scholar 

Comments (0)

No login
gif