Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment[J]. Nat Immunol. 2013;14(10):1014–22.
Article CAS PubMed PubMed Central Google Scholar
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J]. Science. 2011;331(6024):1565–70.
Article CAS PubMed Google Scholar
Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: recent progress and potential biomarkers[J]. Exp Mol Med. 2018;50(12):1–11.
Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations[J], Front Oncol, 2018, 8(86.
Huang X, Zhang X, Li E, Zhang G, Wang X, Tang T, Bai X, Liang T. VISTA: an immune regulatory protein checking tumor and immune cells in cancer immunotherapy[J]. J Hematol Oncol. 2020;13(1):83.
Article CAS PubMed PubMed Central Google Scholar
Noman MZ, Hasmim M, Lequeux A, Xiao M, Duhem C, Chouaib S, Berchem G, Janji B. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges[J], Cells, 2019, 8(9).
Deng J, Li J, Sarde A, Lines JL, Lee YC, Qian DC, Pechenick DA, Manivanh R, Le Mercier I, Lowrey CH, Varn FS, Cheng C, Leib DA, Noelle RJ, Mabaera R. Hypoxia-Induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the Tumor Microenvironment[J]. Cancer Immunol Res. 2019;7(7):1079–90.
Article CAS PubMed PubMed Central Google Scholar
ElTanbouly MA, Zhao Y, Nowak E, Li J, Schaafsma E, Le Mercier I, Ceeraz S, Lines JL, Peng C, Carriere C, Huang X, Day M, Koehn B, Lee SW, Silva Morales M, Hogquist KA, Jameson SC, Mueller D, Rothstein J, Blazar BR, Cheng C, Noelle RJ. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance[J], Science, 2020, 367(6475).
Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA, Fiser A, Almo S, Noelle RJ. VISTA, a novel mouse ig superfamily ligand that negatively regulates T cell responses[J]. J Exp Med. 2011;208(3):577–92.
Article CAS PubMed PubMed Central Google Scholar
Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, Noelle R. VISTA is an immune checkpoint molecule for human T cells[J]. Cancer Res. 2014;74(7):1924–32.
Article CAS PubMed PubMed Central Google Scholar
Le Mercier I, Chen W, Lines JL, Day M, Li J, Sergent P, Noelle RJ, Wang L. VISTA regulates the development of Protective Antitumor Immunity[J]. Cancer Res. 2014;74(7):1933–44.
Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L. Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity[J]. J Clin Invest. 2014;124(5):1966–75.
Article CAS PubMed PubMed Central Google Scholar
Mulati K, Hamanishi J, Matsumura N, Chamoto K, Mise N, Abiko K, Baba T, Yamaguchi K, Horikawa N, Murakami R, Taki M, Budiman K, Zeng X, Hosoe Y, Azuma M, Konishi I, Mandai M. VISTA expressed in tumour cells regulates T cell function[J]. Br J Cancer. 2019;120(1):115–27.
Article CAS PubMed Google Scholar
Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, Wang D, Malarkannan S, Wang L. Immune-checkpoint protein VISTA regulates Antitumor Immunity by Controlling myeloid cell-mediated inflammation and Immunosuppression[J]. Cancer Immunol Res. 2019;7(9):1497–510.
Article CAS PubMed PubMed Central Google Scholar
ElTanbouly MA, Schaafsma E, Smits NC, Shah P, Cheng C, Burns C, Blazar BR, Noelle RJ, Mabaera R. VISTA Re-programs Macrophage Biology Through the Combined Regulation of Tolerance and Anti-inflammatory Pathways[J], Front Immunol, 2020, 11(580187.
Bi K, He MX, Bakouny Z, Kanodia A, Napolitano S, Wu J, Grimaldi G, Braun DA, Cuoco MS, Mayorga A, DelloStritto L, Bouchard G, Steinharter J, Tewari AK, Vokes NI, Shannon E, Sun M, Park J, Chang SL, McGregor BA, Haq R, Denize T, Signoretti S, Guerriero JL, Vigneau S, Rozenblatt-Rosen O, Rotem A, Regev A, Choueiri TK. Van Allen, Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma[J]. Cancer Cell. 2021;39(5):649–e661645.
Article CAS PubMed PubMed Central Google Scholar
Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells[J]. Annu Rev Immunol. 2002;20:621–67.
Article CAS PubMed Google Scholar
Komohara Y, Jinushi M, Takeya M. Clinical significance of macrophage heterogeneity in human malignant tumors[J]. Cancer Sci. 2014;105(1):1–8.
Article CAS PubMed Google Scholar
Karnevi E, Andersson R, Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion[J]. Immunol Cell Biol. 2014;92(6):543–52.
Article CAS PubMed Google Scholar
Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, Ding JL. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest. 2013;93(7):844–54.
Article CAS PubMed Google Scholar
Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, Kim J, Sepulveda AM, Sharp M, Maitra A, Wargo J, Tetzlaff M, Broaddus R, Katz MHG, Varadhachary GR, Overman M, Wang H, Yee C, Bernatchez C, Iacobuzio-Donahue C, Basu S, Allison JP, Sharma P. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a potential target in pancreatic cancer[J]. Proc Natl Acad Sci U S A. 2019;116(5):1692–7.
Article CAS PubMed PubMed Central Google Scholar
Broughton TWK, ElTanbouly MA, Schaafsma E, Deng J, Sarde A, Croteau W, Li J, Nowak EC, Mabaera R, Smits NC, Kuta A, Noelle RJ, Lines JL. Defining the Signature of VISTA on Myeloid Cell Chemokine Responsiveness[J], Front Immunol, 2019, 10(2641.
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, Moran T, Flavell R, Aaronson S, Hu HM, Arase H, Ramanathan S, Flores R, Pan PY, Chen SH. Blocking immunoinhibitory receptor LILRB2 reprograms tumor-associated myeloid cells and promotes antitumor immunity[J]. J Clin Invest. 2018;128(12):5647–62.
Article PubMed PubMed Central Google Scholar
Matsumoto S, Tanaka J, Yano H, Takahashi H, Sugimoto K, Ohue S, Inoue A, Aono H, Kusakawa A, Watanabe H, Kumon Y, Ohnishi T. CD200 + and CD200- macrophages accumulated in ischemic lesions of rat brain: the two populations cannot be classified as either M1 or M2 macrophages[J]. J Neuroimmunol. 2015;282:7–20.
Article CAS PubMed Google Scholar
Hu JM, Liu K, Liu JH, Jiang XL, Wang XL, Chen YZ, Li SG, Zou H, Pang LJ, Liu CX, Cui XB, Yang L, Zhao J, Shen XH, Jiang JF, Liang WH, Yuan XL, Li F. CD163 as a marker of M2 macrophage, contribute to predicte aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma[J]. Oncotarget. 2017;8(13):21526–38.
Article PubMed PubMed Central Google Scholar
Noubissi Nzeteu GA, Schlichtner S, David S, Ruppenstein A, Fasler-Kan E, Raap U, Sumbayev VV, Gibbs BF, Meyer NH. Macrophage Differentiation and Polarization Regulate the Release of the Immune Checkpoint Protein V-Domain Ig Suppressor of T Cell Activation[J], Front Immunol, 2022, 13(837097.
Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, Schoen MK, McCracken MN, Majeti R, Weissman I, Mitra SS, Cheshier SH. Anti-CD47 treatment stimulates phagocytosis of Glioblastoma by M1 and M2 polarized macrophages and promotes M1 Polarized macrophages in Vivo[J]. PLoS ONE. 2016;11(4):e0153550.
Article PubMed PubMed Central Google Scholar
Farajzadeh Valilou S, Keshavarz-Fathi M, Silvestris N, Argentiero A, Rezaei N. The role of inflammatory cytokines and tumor associated macrophages (TAMs) in microenvironment of pancreatic cancer[J]. Cytokine Growth Factor Rev. 2018;39:46–61.
Article CAS PubMed Google Scholar
Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide[J], BMC Cancer, 2015, 15(577.
Kim J, Modlin RL, Moy RL, Dubinett SM, McHugh T, Nickoloff BJ, Uyemura K. IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response[J]. J Immunol. 1995;155(4):2240–7.
Article CAS PubMed Google Scholar
Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice[J]. J Immunol. 1995;155(10):4926–32.
Article CAS PubMed Google Scholar
Sica A, Saccani A, Bottazzi B, Polentarutti N, Vecchi A, van Damme J, Mantovani A. Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages[J]. J Immunol. 2000;164(2):762–7.
Article CAS PubMed Google Scholar
Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX, Xu MM. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med. 2015;21(10):1209–15.
Article CAS PubMed PubMed Central Google Scholar
Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M, Weissman IL. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response[J]. Proc Natl Acad Sci U S A. 2013;110(27):11103–8.
Article CAS PubMed PubMed Central Google Scholar
Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma[J]. Oral Oncol. 2016;57:54–60.
Article CAS PubMed Google Scholar
Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, Wang L. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses[J]. Proc Natl Acad Sci U S A. 2015;112(21):6682–7.
Article CAS PubMed PubMed Central Google Scholar
Yuan L, Tatineni J, Mahoney KM, Freeman GJ. A mediator of quiescence and a Promising Target in Cancer Immunotherapy[J]. Trends Immunol. 2021;42(3):209–27.
Comments (0)