Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumors. Nature. 2000;406:747–52.
Article ADS CAS PubMed Google Scholar
Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B, Senn H-J. Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47.
Article CAS PubMed PubMed Central Google Scholar
Lakhani SR, International Agency for Research on Cancer. WHO classification of breast tumors. 2nd ed. Who Classification of Tumors Editorial Board, editor. IARC; 2019.
de Azambuja E, Cardoso F, de Castro G, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007;96:1504–13.
Article PubMed PubMed Central Google Scholar
Thomssen C, Balic M, Harbeck N, Gnant MS, Gallen V. A brief summary of the consensus discussion on customizing therapies for women with early breast cancer. Breast Care. 2021;2021(16):135–43.
Jiang L, Ma T, Moran MS, Kong X, Li X, Haffty BG, et al. Mammographic features are associated with clinicopathological characteristics in invasive breast cancer. Anticancer Res. 2011;31:2327–34.
Cheng C, Zhao H, Tian W, Hu C, Zhao H. Predicting the expression level of Ki-67 in breast cancer using multi-modal ultrasound parameters. BMC Med Imaging. 2021;21:150.
Article PubMed PubMed Central Google Scholar
Fang J, Zhao W, Li Q, Zhang B, Pu C, Wang H. Correlation analysis of conventional ultrasound characteristics and strain elastography with Ki-67 status in breast cancer. Ultrasound Med Biol. 2020;46:2972–8.
Surov A, Clauser P, Chang Y-W, Li L, Martincich L, Partridge SC, et al. Can diffusion-weighted imaging predict tumor grade and expression of Ki-67 in breast cancer? A multicenter analysis. Breast Cancer Res. 2018;20:58.
Article PubMed PubMed Central Google Scholar
Ma W, Ji Y, Qi L, Guo X, Jian X, Liu P. Breast cancer Ki67 expression prediction by DCE-MRI radiomics features. Clin Radiol. 2018;73:909.e1-909.e5.
Article CAS PubMed Google Scholar
Tagliafico AS, Bignotti B, Rossi F, Matos J, Calabrese M, Valdora F, et al. Breast cancer Ki-67 expression prediction by digital breast tomosynthesis radiomics features. Eur Radiol Exp. 2019;3:36.
Article PubMed PubMed Central Google Scholar
Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C. Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology. 2019;290:290–7.
Gao Y, Moy L, Heller SL. Digital breast tomosynthesis: update on technology, evidence, and clinical practice. Radiographics. 2021;41:321–37.
Mikami Y, Ueno T, Yoshimura K, Tsuda H, Kurosumi M, Masuda S, et al. Interobserver concordance of Ki67 labeling index in breast cancer: Japan Breast Cancer Research Group Ki67 ring study. Cancer Sci. 2013;104:1539–43.
Article CAS PubMed PubMed Central Google Scholar
Gudlaugsson E, Skaland I, Janssen EAM, Smaaland R, Shao Z, Malpica A, et al. Comparison of the effect of different techniques for measurement of Ki67 proliferation on reproducibility and prognosis prediction accuracy in breast cancer. Histopathology. 2012;61:1134–44.
Jonat W, Arnold N. Is the Ki-67 labelling index ready for clinical use? Ann Oncol. 2011;22:500–2.
Article CAS PubMed Google Scholar
Polley M-YC, Leung SCY, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.
Article PubMed PubMed Central Google Scholar
Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A, et al. How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PLoS ONE. 2012;7: e37379.
Article ADS CAS PubMed PubMed Central Google Scholar
Chollet F. Xception: Deep Learning with Depthwise Separable Convolutions. IEEE Conf Comp Vis Pattern Recogn (CVPR). 2017;2017:1800–7.
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. ImageNet: A large-scale hierarchical image database. 2009;248–255.
Liu L, Jiang H, He P, Chen W, Liu X, Gao J, et al. On the Variance of the Adaptive Learning Rate and Beyond [Internet]. arXiv [cs.LG]. 2019; Available from: http://arxiv.org/abs/1908.03265
Jiang T, Jiang W, Chang S, Wang H, Niu S. Intratumoral analysis of digital breast tomosynthesis for predicting the Ki‐67 level in breast cancer: A multi‐center radiomics study. Medical [Internet]. 2022; Available from: https://aapm.onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/mp.15392
Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9:614.
Article ADS PubMed PubMed Central Google Scholar
Amer HA, Schmitzberger F, Ingold-Heppner B, Kussmaul J, El Tohamy MF, Tantawy HI, et al. Digital breast tomosynthesis versus full-field digital mammography-Which modality provides more accurate prediction of margin status in specimen radiography? Eur J Radiol. 2017;93:258–64.
Shimokawa D, Takahashi K, Oba K, Takaya E, Usuzaki T, Kadowaki M, et al. Deep learning model for predicting the presence of stromal invasion of breast cancer on digital breast tomosynthesis. Radiol Phys Technol. 2023. https://doi.org/10.1007/s12194-023-00731-4.
Bustreo S, Osella-Abate S, Cassoni P, Donadio M, Airoldi M, Pedani F, et al. Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast Cancer Res Treat. 2016;157:363–71.
Article CAS PubMed PubMed Central Google Scholar
Johnston SRD, Harbeck N, Hegg R, Toi M, Martin M, Shao ZM, et al. Abemaciclib Combined With Endocrine Therapy for the Adjuvant Treatment of HR+, HER2-, Node-Positive, High-Risk, Early Breast Cancer (monarchE). J Clin Oncol. 2020;38:3987–98.
Article CAS PubMed PubMed Central Google Scholar
Honma N, Yoshida M, Kinowaki K, Horii R, Katsurada Y, Murata Y, et al. (2023) The Japanese breast cancer society clinical practice guidelines for pathological diagnosis of breast cancer, 2022 edition. Breast Cancer, doi: https://doi.org/10.1007/s12282-023-01518-6.
Comments (0)