Sánchez-Ruiz, A. & Colmenarejo, G. Updated prediction of aggregators and assay-interfering substructures in food compounds. J. Agric. Food Chem. 69, 15184–15194 (2021).
Baell, J. B. & Holloway, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53, 2719–2740 (2010).
Article CAS PubMed Google Scholar
David, L. et al. Identification of compounds that interfere with high‐throughput screening assay technologies. ChemMedChem 14, 1795–1802 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bisson, J. et al. Can invalid bioactives undermine natural product-based drug discovery? J. Med. Chem. 59, 1671–1690 (2016).
Article CAS PubMed Google Scholar
Roche, O. et al. Development of a virtual screening method for identification of “frequent hitters” in compound libraries. J. Med. Chem. 45, 137–142 (2002).
Article CAS PubMed Google Scholar
Thorne, N., Auld, D. S. & Inglese, J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol. 14, 315–324 (2010).
Article CAS PubMed PubMed Central Google Scholar
Coussens, N. P. et al. in Assay Guidance Manual (eds Markossian, S. et al.) 1067–1116 (NCATS, 2020).
Baell, J. & Walters, M. A. Chemistry: chemical con artists foil drug discovery. Nature 513, 481–483 (2014).
Article CAS PubMed Google Scholar
Coussens, N. P., Auld, D. S., Thielman, J. R., Wagner, B. K. & Dahlin, J. L. Addressing compound reactivity and aggregation assay interferences: case studies of biochemical high-throughput screening campaigns benefiting from the National Institutes of Health Assay Guidance Manual guidelines. SLAS Discov. 26, 1280–1290 (2021).
Hermann, J. C. et al. Metal impurities cause false positives in high-throughput screening campaigns. ACS Med. Chem. Lett. 4, 197–200 (2013).
Article CAS PubMed Google Scholar
Chatzopoulou, M. et al. Pilot study to quantify palladium impurities in lead-like compounds following commonly used purification techniques. ACS Med. Chem. Lett. 13, 262–270 (2022).
Article CAS PubMed PubMed Central Google Scholar
Dahlin, J. L. et al. Nuisance compounds in cellular assays. Cell Chem. Biol. 28, 356–370 (2021).
Article CAS PubMed PubMed Central Google Scholar
Senger, M. R., Fraga, C. A. M., Dantas, R. F. & Silva, F. P. Filtering promiscuous compounds in early drug discovery: is it a good idea? Drug Discov. Today 21, 868–872 (2016).
Article CAS PubMed Google Scholar
Rothenaigner, I. & Hadian, K. Brief guide: experimental strategies for high-quality hit selection from small-molecule screening campaigns. SLAS Discov. Adv. Sci. Drug Discov. 7, 851–854 (2021).
Kallal, L. A. et al. High-throughput screening and triage assays identify small molecules targeting c-MYC in cancer cells. SLAS Discov. 26, 216–229 (2021).
Article CAS PubMed Google Scholar
Vidler, L. R., Watson, I. A., Margolis, B. J., Cummins, D. J. & Brunavs, M. Investigating the behavior of published PAINS alerts using a pharmaceutical company data set. ACS Med. Chem. Lett. 9, 792–796 (2018).
Article CAS PubMed PubMed Central Google Scholar
Aldrich, C. et al. The ecstasy and agony of assay interference compounds. ACS Cent. Sci. 3, 143–147 (2017).
Article CAS PubMed PubMed Central Google Scholar
McCoy, M. A. et al. Biophysical survey of small-molecule β-catenin inhibitors: a cautionary tale. J. Med. Chem. 65, 7246–7261 (2022).
Article CAS PubMed PubMed Central Google Scholar
Dahlin, J. L. & Walters, M. A. How to triage PAINS-full research. ASSAY Drug Dev. Technol. 14, 168–174 (2016).
Article CAS PubMed PubMed Central Google Scholar
Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).
Article CAS PubMed PubMed Central Google Scholar
Newman, D. J. Problems that can occur when assaying extracts to pure compounds in biological systems. Curr. Ther. Res. 95, 100645 (2021).
Article PubMed PubMed Central Google Scholar
Kenny, P. W. Comment on the ecstasy and agony of assay interference compounds. J. Chem. Inf. Model. 57, 2640–2645 (2017).
Article CAS PubMed Google Scholar
Seidler, J., McGovern, S. L., Doman, T. N. & Shoichet, B. K. Identification and prediction of promiscuous aggregating inhibitors among known drugs. J. Med. Chem. 46, 4477–4486 (2003).
Article CAS PubMed Google Scholar
Doak, A. K., Wille, H., Prusiner, S. B. & Shoichet, B. K. Colloid formation by drugs in simulated intestinal fluid. J. Med. Chem. 53, 4259–4265 (2010).
Article CAS PubMed PubMed Central Google Scholar
Baell, J. B. Feeling nature’s PAINS: natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod. 79, 616–628 (2016).
Article CAS PubMed Google Scholar
Hendrich, A. B. Flavonoid-membrane interactions: possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 27, 27–40 (2006).
Article CAS PubMed Google Scholar
Pawlikowska-Pawlęga, B. et al. Modification of membranes by quercetin, a naturally occurring flavonoid, via its incorporation in the polar head group. Biochim. Biophys. Acta 1768, 2195–2204 (2007).
Kongkamnerd, J. et al. The quenching effect of flavonoids on 4-methylumbelliferone, a potential pitfall in fluorimetric neuraminidase inhibition assays. SLAS Discov. 16, 755–764 (2011).
McGovern, S. L., Caselli, E., Grigorieff, N. & Shoichet, B. K. Common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).
Article CAS PubMed Google Scholar
Capuzzi, S. J., Muratov, E. N. & Tropsha, A. Phantom PAINS: problems with the utility of alerts for pan-assay interference compounds. J. Chem. Inf. Model. 57, 417–427 (2017).
Article CAS PubMed PubMed Central Google Scholar
Cassinelli, G. The roots of modern oncology: from discovery of new antitumor anthracyclines to their clinical use. Tumori J. 102, 226–235 (2016).
Simeonov, A. & Davis, M. I. in Assay Guidance Manual (eds Markossian, S. et al.) 1151–1162 (NCATS, 2004).
Auld, D. S. & Inglese, J. in Assay Guidance Manual (eds Markossian, S. et al.) 1163–1175 (NCATS, 2018).
Dahlin, J. L. & Walters, M. A. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem. 6, 1265–1290 (2014).
Article CAS PubMed Google Scholar
Jones, P., McElroy, S., Morrison, A. & Pannifer, A. The importance of triaging in determining the quality of output from high-throughput screening. Future Med. Chem. 7, 1847–1852 (2015).
Article CAS PubMed Google Scholar
Auld, D. S. et al. in Assay Guidance Manual (eds Markossian, S. et al.) 1177–1202 (NCATS, 2017).
Dahlin, J. L., Baell, J. & Walters, M. A. in Assay Guidance Manual (eds. Markossian, S. et al.) 1117-1150 (NCATS, 2015).
Busby, S. A. et al. Advancements in assay technologies and strategies to enable drug discovery. ACS Chem. Biol. 15, 2636–2648 (2020).
Article CAS PubMed Google Scholar
Holdgate, G., Embrey, K., Milbradt, A. & Davies, G. Biophysical methods in early drug discovery. ADMET DMPK 7, 222–241 (2019).
Article PubMed PubMed Central Google Scholar
Dahlin, J. L. et al. PAINS in the assay: chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 58, 2091–2113 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kitchen, D. B. & Decornez, H. Y. in Small Molecule Medicinal Chemistry: Strategies and Technologies (eds Czechtizky, W. & Hamley, P.) Ch. 7 (Wiley, 2015).
Posner, B. A., Xi, H. & Mills, J. E. J. Enhanced HTS hit selection via a local hit rate analysis. J. Chem. Inf. Model. 49, 2202–2210 (2009).
Comments (0)