Automation of air-free synthesis

Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: From synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).

Article  CAS  PubMed  Google Scholar 

Olsen, K. The first 110 years of laboratory automation: Technologies, applications, and the creative scientist. J. Lab. Autom. 17, 469–480 (2012).

Article  PubMed  Google Scholar 

Stevens, T. Rapid and automatic filtration. Am. Chemist 6, 102 (1875).

Google Scholar 

Palkin, S., Murray, A. G. & Watkins, H. R. Automatic devices for extracting alkaloidal solutions. Ind. Eng. Chem. 17, 612–614 (1925).

Article  CAS  Google Scholar 

Ferguson, B. Jr. Semiautomatic fractionation. A rapid analytical method. Ind. Eng. Chem. Anal. Ed. 14, 493–496 (1942).

Article  CAS  Google Scholar 

Craig, L. C., Gregory, J. D. & Hausmann, W. Versatile laboratory concentration device. Anal. Chem. 22, 1462–1462 (1950).

Article  CAS  Google Scholar 

Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).

Article  CAS  PubMed  Google Scholar 

Bell, N. L. et al. Autonomous execution of highly reactive chemical transformations in the Schlenkputer. Nat. Chem. Eng. 1, 180–189 (2024).

Article  Google Scholar 

Malig, T. C., Yunker, L. P. E., Steiner, S. & Hein, J. E. Online high-performance liquid chromatography analysis of Buchwald–Hartwig aminations from within an inert environment. ACS Catal. 10, 13236–13244 (2020).

Article  CAS  Google Scholar 

Kleoff, M., Schwan, J., Christmann, M. & Heretsch, P. A Modular, argon-driven flow platform for natural product synthesis and late-stage transformations. Org. Lett. 23, 2370–2374 (2021).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif