Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: From synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).
Article CAS PubMed Google Scholar
Olsen, K. The first 110 years of laboratory automation: Technologies, applications, and the creative scientist. J. Lab. Autom. 17, 469–480 (2012).
Stevens, T. Rapid and automatic filtration. Am. Chemist 6, 102 (1875).
Palkin, S., Murray, A. G. & Watkins, H. R. Automatic devices for extracting alkaloidal solutions. Ind. Eng. Chem. 17, 612–614 (1925).
Ferguson, B. Jr. Semiautomatic fractionation. A rapid analytical method. Ind. Eng. Chem. Anal. Ed. 14, 493–496 (1942).
Craig, L. C., Gregory, J. D. & Hausmann, W. Versatile laboratory concentration device. Anal. Chem. 22, 1462–1462 (1950).
Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363, eaav2211 (2019).
Article CAS PubMed Google Scholar
Bell, N. L. et al. Autonomous execution of highly reactive chemical transformations in the Schlenkputer. Nat. Chem. Eng. 1, 180–189 (2024).
Malig, T. C., Yunker, L. P. E., Steiner, S. & Hein, J. E. Online high-performance liquid chromatography analysis of Buchwald–Hartwig aminations from within an inert environment. ACS Catal. 10, 13236–13244 (2020).
Kleoff, M., Schwan, J., Christmann, M. & Heretsch, P. A Modular, argon-driven flow platform for natural product synthesis and late-stage transformations. Org. Lett. 23, 2370–2374 (2021).
Comments (0)