Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).
Article CAS PubMed Google Scholar
Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).
Article CAS PubMed PubMed Central Google Scholar
Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).
Article CAS PubMed Google Scholar
Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004). One of the earliest examples to use the concept of peptide stapling.
Article CAS PubMed PubMed Central Google Scholar
Blackwell, H. E. & Grubbs, R. H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. Engl. 37, 3281–3284 (1998). One of the earliest examples of peptide stapling using olefin metathesis.
Article CAS PubMed Google Scholar
Lau, Y. H., de Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015). A comprehensive review on peptide stapling techniques.
Article CAS PubMed Google Scholar
Liu, J. et al. Recent advances in late-stage construction of stapled peptides via C–H activation. ChemBioChem 22, 2762–2771 (2021).
Article CAS PubMed Google Scholar
Bluntzer, M. T. J., O’Connell, J., Baker, T. S., Michel, J. & Hulme, A. N. Designing stapled peptides to inhibit protein-protein interactions: an analysis of successes in a rapidly changing field. Pept. Sci. 113, e24191 (2021).
Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R. & Dömling, A. Stapled peptides inhibitors: a new window for target drug discovery. Comput. Struct. Biotechnol. J. 17, 263–281 (2019).
Article CAS PubMed PubMed Central Google Scholar
Li, X., Zou, Y. & Hu, H.-G. Different stapling-based peptide drug design: mimicking α-helix as inhibitors of protein–protein interaction. Chin. Chem. Lett. 29, 1088–1092 (2018).
Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48 (2022).
Article CAS PubMed PubMed Central Google Scholar
Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).
Article CAS PubMed Google Scholar
Rhodes, C. A. & Pei, D. Bicyclic peptides as next-generation therapeutics. Chem. Eur. J. 23, 12690–12703 (2017).
Article CAS PubMed Google Scholar
Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).
Article CAS PubMed Google Scholar
Robertson, N. S. & Spring, D. R. Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules 23, 959 (2018).
Article PubMed PubMed Central Google Scholar
Moiola, M., Memeo, M. G. & Quadrelli, P. Stapled peptides — a useful improvement for peptide-based drugs. Molecules 24, 3654 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cooper, B. M., Iegre, J. O′., Donovan, D. H., Ölwegård Halvarsson, M. & Spring, D. R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).
Article CAS PubMed Google Scholar
Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. Engl. 56, 10294–10323 (2017).
Article CAS PubMed Google Scholar
Jing, X. & Jin, K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med. Res. Rev. 40, 753–810 (2020).
Article CAS PubMed Google Scholar
Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).
Article CAS PubMed PubMed Central Google Scholar
Lau, Y. H. et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem. Sci. 5, 1804–1809 (2014).
Bechtler, C. & Lamers, C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med. Chem. 12, 1325–1351 (2021).
Article CAS PubMed PubMed Central Google Scholar
Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).
Article CAS PubMed Google Scholar
Madden, M. M. et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg. Med. Chem. Lett. 21, 1472–1475 (2011).
Article CAS PubMed PubMed Central Google Scholar
Brunel, F. M. & Dawson, P. E. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem. Commun. https://doi.org/10.1039/B419015G (2005).
Mendive-Tapia, L. et al. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).
Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).
Article CAS PubMed PubMed Central Google Scholar
Fairlie, D. P. & Dantas de Araujo, A. Stapling peptides using cysteine crosslinking. Pept. Sci. 106, 843–852 (2016).
Chen, F.-J., Zheng, M., Nobile, V. & Gao, J. Fast and cysteine-specific modification of peptides, proteins and bacteriophage using chlorooximes. Chem. Eur. J. 28, e202200058 (2022).
Article CAS PubMed Google Scholar
Yu, Q., Bai, L. & Jiang, X. Disulfide click reaction for stapling of S-terminal peptides. Angew. Chem. Int. Ed. Engl. 62, e202314379 (2023).
Article CAS PubMed Google Scholar
Luo, Q., Tao, Y., Sheng, W., Lu, J. & Wang, H. Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Nat. Commun. 10, 142 (2019).
Article PubMed PubMed Central Google Scholar
Iskandar, S. E., Haberman, V. A. & Bowers, A. A. Expanding the chemical diversity of genetically encoded libraries. ACS Comb. Sci. 22, 712–733 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).
Gunnoo, S. B. & Madder, A. Chemical protein modification through cysteine. ChemBioChem 17, 529–553 (2016).
Article CAS PubMed Google Scholar
Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).
Article CAS PubMed Google Scholar
Ochtrop, P. & Hackenberger, C. P. R. Recent advances of thiol-selective bioconjugation reactions. Curr. Opin. Chem. Biol. 58, 28–36 (2020).
Article CAS PubMed Google Scholar
Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).
Comments (0)