Non-symmetric stapling of native peptides

Yan, R. et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020).

Article  CAS  PubMed  Google Scholar 

Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, F., Li, W., Farzan, M. & Harrison, S. C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309, 1864–1868 (2005).

Article  CAS  PubMed  Google Scholar 

Walensky, L. D. et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305, 1466–1470 (2004). One of the earliest examples to use the concept of peptide stapling.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blackwell, H. E. & Grubbs, R. H. Highly efficient synthesis of covalently cross-linked peptide helices by ring-closing metathesis. Angew. Chem. Int. Ed. Engl. 37, 3281–3284 (1998). One of the earliest examples of peptide stapling using olefin metathesis.

Article  CAS  PubMed  Google Scholar 

Lau, Y. H., de Andrade, P., Wu, Y. & Spring, D. R. Peptide stapling techniques based on different macrocyclisation chemistries. Chem. Soc. Rev. 44, 91–102 (2015). A comprehensive review on peptide stapling techniques.

Article  CAS  PubMed  Google Scholar 

Liu, J. et al. Recent advances in late-stage construction of stapled peptides via C–H activation. ChemBioChem 22, 2762–2771 (2021).

Article  CAS  PubMed  Google Scholar 

Bluntzer, M. T. J., O’Connell, J., Baker, T. S., Michel, J. & Hulme, A. N. Designing stapled peptides to inhibit protein-protein interactions: an analysis of successes in a rapidly changing field. Pept. Sci. 113, e24191 (2021).

Article  CAS  Google Scholar 

Ali, A. M., Atmaj, J., Van Oosterwijk, N., Groves, M. R. & Dömling, A. Stapled peptides inhibitors: a new window for target drug discovery. Comput. Struct. Biotechnol. J. 17, 263–281 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X., Zou, Y. & Hu, H.-G. Different stapling-based peptide drug design: mimicking α-helix as inhibitors of protein–protein interaction. Chin. Chem. Lett. 29, 1088–1092 (2018).

Article  Google Scholar 

Wang, L. et al. Therapeutic peptides: current applications and future directions. Signal Transduct. Target. Ther. 7, 48 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

Article  CAS  PubMed  Google Scholar 

Rhodes, C. A. & Pei, D. Bicyclic peptides as next-generation therapeutics. Chem. Eur. J. 23, 12690–12703 (2017).

Article  CAS  PubMed  Google Scholar 

Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).

Article  CAS  PubMed  Google Scholar 

Robertson, N. S. & Spring, D. R. Using peptidomimetics and constrained peptides as valuable tools for inhibiting protein–protein interactions. Molecules 23, 959 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Moiola, M., Memeo, M. G. & Quadrelli, P. Stapled peptides — a useful improvement for peptide-based drugs. Molecules 24, 3654 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooper, B. M., Iegre, J. O′., Donovan, D. H., Ölwegård Halvarsson, M. & Spring, D. R. Peptides as a platform for targeted therapeutics for cancer: peptide–drug conjugates (PDCs). Chem. Soc. Rev. 50, 1480–1494 (2021).

Article  CAS  PubMed  Google Scholar 

Valeur, E. et al. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed. Engl. 56, 10294–10323 (2017).

Article  CAS  PubMed  Google Scholar 

Jing, X. & Jin, K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med. Res. Rev. 40, 753–810 (2020).

Article  CAS  PubMed  Google Scholar 

Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and progress. J. Med. Chem. 57, 6275–6288 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau, Y. H. et al. Functionalised staple linkages for modulating the cellular activity of stapled peptides. Chem. Sci. 5, 1804–1809 (2014).

Article  CAS  Google Scholar 

Bechtler, C. & Lamers, C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med. Chem. 12, 1325–1351 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chow, H. Y., Zhang, Y., Matheson, E. & Li, X. Ligation technologies for the synthesis of cyclic peptides. Chem. Rev. 119, 9971–10001 (2019).

Article  CAS  PubMed  Google Scholar 

Madden, M. M. et al. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg. Med. Chem. Lett. 21, 1472–1475 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunel, F. M. & Dawson, P. E. Synthesis of constrained helical peptides by thioether ligation: application to analogs of gp41. Chem. Commun. https://doi.org/10.1039/B419015G (2005).

Mendive-Tapia, L. et al. New peptide architectures through C-H activation stapling between tryptophan-phenylalanine/tyrosine residues. Nat. Commun. 6, 7160 (2015).

Article  PubMed  Google Scholar 

Spokoyny, A. M. et al. A perfluoroaryl-cysteine SNAr chemistry approach to unprotected peptide stapling. J. Am. Chem. Soc. 135, 5946–5949 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fairlie, D. P. & Dantas de Araujo, A. Stapling peptides using cysteine crosslinking. Pept. Sci. 106, 843–852 (2016).

Article  CAS  Google Scholar 

Chen, F.-J., Zheng, M., Nobile, V. & Gao, J. Fast and cysteine-specific modification of peptides, proteins and bacteriophage using chlorooximes. Chem. Eur. J. 28, e202200058 (2022).

Article  CAS  PubMed  Google Scholar 

Yu, Q., Bai, L. & Jiang, X. Disulfide click reaction for stapling of S-terminal peptides. Angew. Chem. Int. Ed. Engl. 62, e202314379 (2023).

Article  CAS  PubMed  Google Scholar 

Luo, Q., Tao, Y., Sheng, W., Lu, J. & Wang, H. Dinitroimidazoles as bifunctional bioconjugation reagents for protein functionalization and peptide macrocyclization. Nat. Commun. 10, 142 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Iskandar, S. E., Haberman, V. A. & Bowers, A. A. Expanding the chemical diversity of genetically encoded libraries. ACS Comb. Sci. 22, 712–733 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147–171 (2019).

Article  CAS  Google Scholar 

Gunnoo, S. B. & Madder, A. Chemical protein modification through cysteine. ChemBioChem 17, 529–553 (2016).

Article  CAS  PubMed  Google Scholar 

Boutureira, O. & Bernardes, G. J. L. Advances in chemical protein modification. Chem. Rev. 115, 2174–2195 (2015).

Article  CAS  PubMed  Google Scholar 

Ochtrop, P. & Hackenberger, C. P. R. Recent advances of thiol-selective bioconjugation reactions. Curr. Opin. Chem. Biol. 58, 28–36 (2020).

Article  CAS  PubMed  Google Scholar 

Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nat. Commun. 5, 4740 (2014).

Article  CAS  PubMed  Google Scholar 

Comments (0)

No login
gif