Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).
Article CAS PubMed Google Scholar
Rambout, X., Dequiedt, F. & Maquat, L. E. Beyond transcription: roles of transcription factors in pre-mRNA splicing. Chem. Rev. 118, 4339–4364 (2018).
Article CAS PubMed Google Scholar
Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779–796 (2022).
Article CAS PubMed PubMed Central Google Scholar
Wolin, S. L. & Maquat, L. E. Cellular RNA surveillance in health and disease. Science 366, 822–827 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kilchert, C. RNA exosomes and their cofactors. Methods Mol. Biol. 2062, 215–235 (2020).
Article CAS PubMed Google Scholar
Schmid, M. & Jensen, T. H. Controlling nuclear RNA levels. Nat. Rev. Genet. 19, 518–529 (2018).
Article CAS PubMed Google Scholar
Kilchert, C., Wittmann, S. & Vasiljeva, L. The regulation and functions of the nuclear RNA exosome complex. Nat. Rev. Mol. Cell Biol. 17, 227–239 (2016).
Article CAS PubMed Google Scholar
Agostini, F., Zagalak, J., Attig, J., Ule, J. & Luscombe, N. M. Intergenic RNA mainly derives from nascent transcripts of known genes. Genome Biol. 22, 136 (2021).
Article CAS PubMed PubMed Central Google Scholar
Collins, J. W. et al. ZCCHC8 is required for the degradation of pervasive transcripts originating from multiple genomic regulatory features. Preprint at bioRxiv https://doi.org/10.1101/2021.01.29.428898 (2021).
Wu, G. et al. A two-layered targeting mechanism underlies nuclear RNA sorting by the human exosome. Cell Rep. 30, 2387–2401.e5 (2020).
Article CAS PubMed Google Scholar
Wu, M. et al. The RNA exosome shapes the expression of key protein-coding genes. Nucleic Acids Res. 48, 8509–8528 (2020).
Article CAS PubMed PubMed Central Google Scholar
Villa, T. & Porrua, O. Pervasive transcription: a controlled risk. FEBS J. 290, 3723–3736 (2022).
Eaton, J. D. & West, S. Termination of transcription by RNA polymerase II: BOOM! Trends Genet. 36, 664–675 (2020).
Article CAS PubMed Google Scholar
Zhou, H. et al. Rixosomal RNA degradation contributes to silencing of Polycomb target genes. Nature 604, 167–174 (2022).
Article CAS PubMed PubMed Central Google Scholar
Andersen, P. R. et al. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat. Struct. Mol. Biol. 20, 1367–1376 (2013).
Article CAS PubMed PubMed Central Google Scholar
Meola, N. et al. Identification of a nuclear exosome decay pathway for processed transcripts. Mol. Cell 64, 520–533 (2016). This study identifies the core constituents and the canonical RNA targets of the RNA exosome adaptor PAXT in human cells.
Article CAS PubMed Google Scholar
Winczura, K. et al. Characterizing ZC3H18, a multi-domain protein at the interface of RNA production and destruction decisions. Cell Rep. 22, 44–58 (2018).
Article CAS PubMed PubMed Central Google Scholar
Rouvière, J. O. et al. ARS2 instructs early transcription termination-coupled RNA decay by recruiting ZC3H4 to nascent transcripts. Mol. Cell 22, 2240–2257.e6 (2023).
Foucher, A. E. et al. Structural analysis of Red1 as a conserved scaffold of the RNA-targeting MTREC/PAXT complex. Nat. Commun. 13, 4969 (2022).
Article CAS PubMed PubMed Central Google Scholar
Polák, P. et al. Dual agonistic and antagonistic roles of ZC3H18 provide for co-activation of distinct nuclear RNA decay pathways. Cell Rep. 42, 113325 (2023).
Article PubMed PubMed Central Google Scholar
Dubiez, E. et al. Structural basis for competitive binding of productive and degradative co-transcriptional effectors to the nuclear cap-binding complex. Cell Rep. 43, 113639 (2024).
Article CAS PubMed Google Scholar
Lubas, M. et al. Interaction profiling identifies the human nuclear exosome targeting complex. Mol. Cell 43, 624–637 (2011). This study defines the constituents and the canonical RNA targets of the RNA exosome adaptors NEXT and mTRAMP in human cells.
Article CAS PubMed Google Scholar
Lubas, M. et al. The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis. Cell Rep. 10, 178–192 (2015).
Article CAS PubMed Google Scholar
Lykke-Andersen, S. et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol. Cell 81, 514–529.e6 (2021).
Article CAS PubMed Google Scholar
Ogami, K. et al. An Mtr4/ZFC3H1 complex facilitates turnover of unstable nuclear RNAs to prevent their cytoplasmic transport and global translational repression. Genes Dev. 31, 1257–1271 (2017).
Article CAS PubMed PubMed Central Google Scholar
Insco, M. L. et al. Oncogenic CDK13 mutations impede nuclear RNA surveillance. Science 380, eabn7625 (2023).
Article CAS PubMed PubMed Central Google Scholar
Bresson, S. M., Hunter, O. V., Hunter, A. C. & Conrad, N. K. Canonical poly(A) polymerase activity promotes the decay of a wide variety of mammalian nuclear RNAs. PLoS Genet. 11, e1005610 (2015). This study uses human cells to identify those nuclear RNAs that are degraded by the PPD pathway and how they are degraded.
Article PubMed PubMed Central Google Scholar
Beaulieu, Y. B., Kleinman, C. L., Landry-Voyer, A. M., Majewski, J. & Bachand, F. Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1. PLoS Genet. 8, e1003078 (2012).
Article CAS PubMed PubMed Central Google Scholar
Silla, T. et al. The human ZC3H3 and RBM26/27 proteins are critical for PAXT-mediated nuclear RNA decay. Nucleic Acids Res. 48, 2518–2530 (2020).
Article CAS PubMed PubMed Central Google Scholar
Hurt, J. A. et al. A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export. J. Cell Biol. 185, 265–277 (2009).
Article CAS PubMed PubMed Central Google Scholar
Wagner, E. J., Tong, L. & Adelman, K. Integrator is a global promoter-proximal termination complex. Mol. Cell 83, 416–427 (2023).
Article CAS PubMed PubMed Central Google Scholar
Estell, C. et al. A restrictor complex of ZC3H4, WDR82, and ARS2 integrates with PNUTS to control unproductive transcription. Mol. Cell 83, 2222–2239.e5 (2023).
Article CAS PubMed Google Scholar
Rambout, X. & Maquat, L. E. The nuclear cap-binding complex as choreographer of gene transcription and pre-mRNA processing. Genes Dev. 34, 1113–1127 (2020).
Article CAS PubMed PubMed Central Google Scholar
Rambout, X. et al. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol. Cell 83, 186–202.e11 (2023).
Article CAS PubMed PubMed Central Google Scholar
Rambout, X. & Maquat, L. E. NCBP3: a multifaceted adaptive regulator of gene expression. Trends Biochem. Sci. 46, 87–96 (2021).
Article CAS PubMed Google Scholar
Klama, S. et al. A guard protein mediated quality control mechanism monitors 5′-capping of pre-mRNAs. Nucleic Acids Res. 50, 11301–11314 (2022).
Article CAS PubMed PubMed Central Google Scholar
Jiao, X., Chang, J. H., Kilic, T., Tong, L. & Kiledjian, M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol. Cell 50, 104–115 (2013).
Comments (0)