Mattick, J. S. et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 24, 430–447 (2023).
Article CAS PubMed Google Scholar
Nordström, K., Wagner, E. G. H., Persson, C., Blomberg, P. & Öhman, M. Translational control by antisense RNA in control of plasmid replication. Gene 72, 237–240 (1988).
Lipman, D. J. Making (anti)sense of non-coding sequence conservation. Nucleic Acids Res. 25, 3580–3583 (1997).
Article CAS PubMed PubMed Central Google Scholar
Fahey, M. E., Moore, T. F. & Higgins, D. G. Overlapping antisense transcription in the human genome. Comp. Funct. Genomics 3, 244–253 (2002).
Article CAS PubMed PubMed Central Google Scholar
Shendure, J. & Church, G. M. Computational discovery of sense-antisense transcription in the human and mouse genomes. Genome Biol. 3, RESEARCH0044 (2002).
Article PubMed PubMed Central Google Scholar
Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).
Kiyosawa, H., Yamanaka, I., Osato, N., Kondo, S. & Hayashizaki, Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res. 13, 1324–1334 (2003).
Article CAS PubMed PubMed Central Google Scholar
Pillay, S., Takahashi, H., Carninci, P. & Kanhere, A. Antisense RNAs during early vertebrate development are divided in groups with distinct features. Genome Res. 31, 995–1010 (2021).
Article PubMed PubMed Central Google Scholar
Arnold, M. & Stengel, K. R. Emerging insights into enhancer biology and function. Transcription 14, 68–87 (2023).
Article CAS PubMed Google Scholar
Barral, A. & Déjardin, J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 14, 2160551 (2023).
Article PubMed PubMed Central Google Scholar
Yamanaka, Y. et al. Antisense RNA controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 11, 967–976 (2015).
Article CAS PubMed PubMed Central Google Scholar
Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).
Article CAS PubMed Google Scholar
Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 6, e1001233 (2010).
Article PubMed PubMed Central Google Scholar
Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).
Article CAS PubMed PubMed Central Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).
Article CAS PubMed Google Scholar
Ma, J. et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 29, 2754–2768 (2021).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. An antisense circular RNA regulates expression of RuBisCO small subunit genes in Arabidopsis. Front. Plant Sci. 12, 665014 (2021).
Article PubMed PubMed Central Google Scholar
Wight, M. & Werner, A. The functions of natural antisense transcripts. Essays Biochem. 54, 91–101 (2013).
Article CAS PubMed PubMed Central Google Scholar
Vangoor, V. R., Gomes-Duarte, A. & Pasterkamp, R. J. Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156, 777–801 (2021).
Article CAS PubMed Google Scholar
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7, e30733 (2012).
Article CAS PubMed PubMed Central Google Scholar
Gonzàlez-Porta, M., Frankish, A., Rung, J., Harrow, J. & Brazma, A. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 14, R70 (2013).
Article PubMed PubMed Central Google Scholar
Tung, K.-F., Pan, C.-Y., Chen, C.-H. & Lin, W.-C. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci. Rep. 10, 16245 (2020).
Article CAS PubMed PubMed Central Google Scholar
Gendrel, A. V. & Heard, E. Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30, 561–580 (2014).
Article CAS PubMed Google Scholar
Hawkins, P. G. & Morris, K. V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165–175 (2010).
Article PubMed PubMed Central Google Scholar
Georg, J. & Hess, W. R. Widespread antisense transcription in Prokaryotes. Microbiol. Spect. 6, https://doi.org/10.1128/microbiolspec.RWR-0029-2018 (2018).
Gunasekera, A. M. et al. Widespread distribution of antisense transcripts in the Plasmodium falciparum genome. Mol. Biochem. Parasitol. 136, 35–42 (2004).
Article CAS PubMed Google Scholar
Reis, R. S. & Poirier, Y. Making sense of the natural antisense transcript puzzle. Trends Plant. Sci. 26, 1104–1115 (2021).
Article CAS PubMed Google Scholar
Sun, M., Hurst, L. D., Carmichael, G. G. & Chen, J. Evidence for variation in abundance of antisense transcripts between multicellular animals but no relationship between antisense transcription and organismic complexity. Genome Res. 16, 922–933 (2006).
Article CAS PubMed PubMed Central Google Scholar
Balbin, O. A. et al. The landscape of antisense gene expression in human cancers. Genome Res. 25, 1068–1079 (2015).
Article CAS PubMed PubMed Central Google Scholar
Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).
Article CAS PubMed Google Scholar
Amaral, P. et al. The status of the human gene catalogue. Nature 622, 41–47 (2023).
Article CAS PubMed PubMed Central Google Scholar
Engström, P. G. et al. Complex loci in human and mouse genomes. PLoS Genet. 2, e47 (2006).
Article PubMed PubMed Central Google Scholar
He, Y., Vogelstein, B., Velculescu, V. E., Papadopoulos, N. & Kinzler, K. W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).
Article CAS PubMed PubMed Central Google Scholar
Ozsolak, F. et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 143, 1018–1029 (2010).
Article CAS PubMed PubMed Central Google Scholar
Chen, J. et al. Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids Res. 32, 4812–4820 (2004).
Article CAS PubMed PubMed Central Google Scholar
Kiyosawa, H. & Abe, K. Speculations on the role of natural antisense transcripts in mammalian X chromosome evolution. Cytogenet. Genome Res. 99, 151–156 (2002).
Article CAS PubMed Google Scholar
Piatek, M. J., Henderson, V., Zynad, H. S. & Werner, A. Natural antisense transcription from a comparative perspective. Genomics 108, 56–63 (2016).
Comments (0)