Ielmini, D. & Waser, R. Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications (Wiley, 2016).
Pearson, A. D., Northover, W., Dewald, J. F. & Peck, W. Jr Chemical, physical, and electrical properties of some unusual inorganic glasses. Adv. Glas. Technol. 2, 357–365 (1962).
Molas, G. & Nowak, E. Advances in emerging memory technologies: from data storage to artificial intelligence. Appl. Sci. 11, 11254 (2021).
Lammers, D. MRAM debut cues memory transition. EE Times https://www.eetimes.com/mram-debut-cues-memory-transition (2006).
Yole Group. Memory: keep your semiconductor memories alive. Yole Group https://www.yolegroup.com/thematic/semiconductor-memory (2024).
Kim, M. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 5, 367–373 (2022).
Wainstein, N., Adam, G., Yalon, E. & Kvatinsky, S. Radiofrequency switches based on emerging resistive memory technologies — a survey. Proc. IEEE 109, 77–95 (2021).
Pazos, S. et al. Hardware implementation of a true random number generator integrating a hexagonal boron nitride memristor with a commercial microcontroller. Nanoscale 15, 2171–2180 (2023).
Article CAS PubMed Google Scholar
Zhu, K. et al. Inkjet-printed h-BN memristors for hardware security. Nanoscale 15, 9985–9992 (2023).
Article CAS PubMed Google Scholar
Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).
Article CAS PubMed Google Scholar
Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).
Article CAS PubMed Google Scholar
Lanza, M., Molas, G. & Naveh, I. The gap between academia and industry in resistive switching research. Nat. Electron. 6, 260–263 (2023).
JEDEC. Global standards for the microelectronics industry. JEDEC https://www.jedec.org/standards-documents (2024).
Xu, X. et al. High-yield Ti3C2Tx MXene–MoS2 integrated circuits. Adv. Mater. 34, 2107370 (2021).
Zhang, Y. et al. MXene printing and patterned coating for device applications. Adv. Mater. 32, 1908486 (2020).
Wiefels, S. et al. Reliability aspects of 28 nm BEOL-integrated resistive switching random access memory. Phys. Status Solidi A https://doi.org/10.1002/pssa.202300401 (2023).
Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).
Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023).
Lu, K. et al. Solution-processed electronics for artificial synapses. Mater. Horiz. 8, 447–470 (2021).
Article CAS PubMed Google Scholar
van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).
Liu, Q. et al. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022).
Article CAS PubMed Google Scholar
Lian, H. et al. Metal-containing organic compounds for memory and data storage applications. Chem. Soc. Rev. 51, 1926–1982 (2022).
Article CAS PubMed Google Scholar
Xu, X., Guo, T., Lanza, M. & Alshareef, H. N. Status and prospects of MXene-based nanoelectronic devices. Matter 6, 800–837 (2023).
Fujitsu Semiconductor Memory Solution. Non-volatile memory with very small operating current — ReRAM (resistive random access memory). Fujitsu https://www.fujitsu.com/jp/group/fsm/en/products/reram (2024).
AnandTech. Analyzing intel-micron 3D XPoint: the next generation non-volatile memory. AnandTech https://www.anandtech.com/show/9470/intel-and-micron-announce-3d-xpoint-nonvolatile-memory-technology-1000x-higher-performance-endurance-than-nand (2015).
Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).
Article CAS PubMed Google Scholar
Ang, D. S., Zhou, Y., Yew, K. S. & Berco, D. On the area scalability of valence-change memristors for neuromorphic computing. Appl. Phys. Lett. 115, 173501 (2019).
Tower Semiconductor. Mixed-signal/CMOS. Tower Semiconductor https://towersemi.com/technology/mixed-signal-cmos (2018).
Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).
Article CAS PubMed Google Scholar
Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019).
Article CAS PubMed Google Scholar
Zhang, B. et al. Redox gated polymer memristive processing memory unit. Nat. Commun. 10, 736 (2019).
Article CAS PubMed PubMed Central Google Scholar
Tang, B. et al. Wafer-scale solution-processed 2D material analog resistive memory array for memory-based computing. Nat. Commun. 13, 3037 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ivanov, A. I., Gutakovskii, A. K., Kotin, I. A., Soots, R. A. & Antonova, I. V. Resistive switching effect with ON/OFF current relation up to 109 in 2D printed composite films of fluorinated graphene with V2O5 nanoparticles. Adv. Electron. Mater. 5, 1900310 (2019).
Zhang, Y. et al. Three-dimensional perovskite nanowire array-based ultrafast resistive RAM with ultralong data retention. Sci. Adv. 7, eabg3788 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wang, K., Chen, J. & Yan, X. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy 79, 105453 (2021).
Lanza, M. et al. Standards for the characterization of endurance in resistive switching devices. ACS Nano 15, 17214–17231 (2021).
Article CAS PubMed Google Scholar
Chua, L. Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011).
Cheng, P., Sun, K. & Hu, Y. H. Memristive behavior and ideal memristor of 1T phase MoS2 nanosheets. Nano Lett. 16, 572–576 (2016).
Article CAS PubMed Google Scholar
Wang, Y. et al. MXene‐ZnO memristor for multimodal in‐sensor computing. Adv. Funct. Mater. 31, 2100144 (2021).
Kang, K. et al. High‐performance solution‐processed organo‐metal halide perovskite unipolar resistive memory devices in a cross‐bar array structure. Adv. Mater. 31, 1804841 (2019).
Wang, Y. et al. Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021).
Article CAS PubMed PubMed Central Google Scholar
Li, T. et al. On-chip integrated process-programmable sub-10 nm thick molecular devices switching between photomultiplication and memristive behaviour. Nat. Commun. 13, 2875 (2022).
Article CAS PubMed PubMed Central Google Scholar
Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).
Article CAS PubMed Google Scholar
Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).
Article PubMed PubMed Central Google Scholar
John, R. A. et al. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun. 13, 2074 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yoo, E. J. et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv. Mater. 27, 6170–6175 (2015).
Article CAS PubMed Google Scholar
Zhao, B. et al. Reproducible and low‐power multistate bio‐memristor from interpenetrating network electrolyte design. InfoMat 4, e12350 (2022).
Liang, L. et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device. J. Am. Chem. Soc. 137, 3102–3108
Comments (0)