Araujo AC, Abreu F, Silva KT, et al. 2015 Magnetotactic bacteria as potential sources of bioproducts. Mar. Drugs 13 389–430
Article PubMed PubMed Central Google Scholar
Asoufi HM, Al-Antary TM and Awwad AM 2018 Magnetite (Fe3O4) nanoparticles synthesis and anti green peach aphid activity (Myzuspersicae sulzer). J. Chem. Biochem. 6 9–16
Barber-Zucker S, Keren-Khadmy N and Zarivach R 2016 From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci. 25 338–351
Article CAS PubMed Google Scholar
Bazylinski DA 1996 Controlled biomineralization of magnetic minerals by magnetotactic bacteria. Chem. Geol. 132 191–198
Bazylinski DA and Frankel RB 2004 Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2 217–230
Article CAS PubMed Google Scholar
Behera SS, Patra JK, Pramanik K, et al. 2012 Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J. Nanosci. Eng. 2 196–200
Bharathi S, Kumaran S, Suresh G, et al. 2020 Extracellular synthesis of nano selenium from freshwater bacteria Bacillus sp., and its validation of antibacterial and cytotoxic potential. Biocatal. Agric. Biotechnol. 27 101655
Bhattarai D, Bhattarai N and Osti R 2019 Prevalence of thermophilic Campylobacter isolated from water used in slaughterhouse of Kathmandu and Ruphendehi District, Nepal. Int. J. Appl. Sci. Biotechnol. 7 75–80
Blair JMA, Webber MA, Baylay AJ, et al. 2015 Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13 42–51
Article CAS PubMed Google Scholar
Cappuccino JG and Welsh C 2017 Microbiology, a laboratory manual 11th edition (London: Pearson Education Limited) 57–87
Chekli L, Phuntsho S, Roy M, et al. 2013 Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res. 47 4585–4599
Article CAS PubMed Google Scholar
Felsenstein J 1985 Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783
Fischer H, Mastrogiacomo G, Löffler JF, et al. 2008 Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense. Earth Planet. Sci. Lett. 270 200–208
Flies CB, Jonkers HM, de Beer D, et al. 2005 Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol. Ecol. 52 185–195
Article CAS PubMed Google Scholar
Ghazzal MN, Goffin J, Gaigneaux EM, et al. 2017 Magnetic nanoparticle with high efficiency for bacteria and yeast extraction from contaminated liquid media. J. Taiwan Inst. Chem. Eng. 71 62–68
Guzzo F, Scognamiglio M, Fiorentino A, et al. 2020 Plant derived natural products against Pseudomonas aeruginosa and Staphylococcus aureus: antibiofilm activity and molecular mechanisms. Molecules 25 5024–5048
Article CAS PubMed PubMed Central Google Scholar
He K, Roud SC, Gilder SA, et al. 2018 Seasonal variability of magnetotactic bacteria in a freshwater pond. Geophys. Res. Lett. 45 2294–2302
Huang XQ and Madan A 1999 CAP3: A DNA sequence assembly program. Genome Res. 9 868–877
Article CAS PubMed PubMed Central Google Scholar
Jacob JJ and Suthindhiran K 2016 Magnetotactic bacteria and magnetosomes – scope and challenges. Mater. Sci. Eng. C. Mater. Biol. Appl. 68 919–928
Article CAS PubMed Google Scholar
Lefevre CT and Bazylinski DA 2013 Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol. Mol. Biol. Rev. 77 497–526
Article CAS PubMed PubMed Central Google Scholar
McCausland HC and Komeili A 2020 Magnetic genes: studying the genetics of biomineralization in magnetotactic bacteria. PLoS Genet. 16 e1008499
Article PubMed PubMed Central Google Scholar
Oestreicher Z, Lower SK, Lin W, et al. 2012 Collection, isolation and enrichment of naturally occurring magnetotactic bacteria from the environment. J. Vis. Exp. 69 e50123
Pankhurst Q, Connolly J, Jones S, et al. 2003 Applications of magnetic nanoparticles in biomedicine. J Phys. D: Appl. Phys. 36 167–181
Pósfai M, Buseck PR, Bazylinski DA, et al. 1998 Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am. Mineral. 83 1469–1481
Powers JH 2004 Antimicrobial drug development – the past, the present, and the future. Clin. Microbiol. Infect. 10 23–31
Prabhu NN and Kowshik M 2016 Techniques for the isolation of magnetotactic bacteria. J. Microb. Biochem. Technol. 8 188–194
Prestinaci F, Pezzotti P and Pantosti A 2015 Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 109 309–318
Article PubMed PubMed Central Google Scholar
Qasim S, Zafar A, Saif MS, et al. 2020 Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J. Photochem. Photobiol. B Biol. 204 111784
Rǎcuciu M, Creangǎ DE, Airinei A, et al. 2010 Synthesis and properties of magnetic nanoparticles coated with biocompatible compounds. Mater. Sci.-Pol. 28 609–616
Rajalakshmi A, Ramesh M, Divya E, et al. 2021 Production and characterization of naturally occurring antibacterial magnetite nanoparticles from magnetotactic Bacillus sp. MTB17. J. Appl. Microbiol. 132 2683–2693
Rajalakshmi A, Anjukam E, Ramesh M, et al. 2022 A novel colorimetric technique for estimating iron in magnetosomes of magnetotactic bacteria based on linear regression. Arch. Microbiol. 204 282
Article CAS PubMed Google Scholar
Ramalingam B, Parandhaman T and Das SK 2016 Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram- negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. Appl. Mater. Interfaces 8 4963–4976
Razack SA, Suresh A, Sriram S, et al. 2020 Green synthesis of iron oxide nanoparticles using Hibiscus rosa-sinensis for fortifying wheat biscuits. SN Appl. Sci. 2 898
Saitou N and Nei M 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406–425
Saqib S, Munis MFH, Zaman W, et al. 2019 Synthesis, characterization, and use of iron oxide nanoparticles for antibacterial activity. Micro. Res. Tech. 82 415–420
Sharif HMA, Mahmood A, Cheng HY, et al. 2019 Fe3O4 nanoparticles coated with EDTA and Ag nanoparticles for the catalytic reduction of organic dyes from wastewater. ACS Appl. Nano. Mater. 2 5310–5319
Sundar K, Vidya R, Mukherjee A, et al. 2010 High chromium tolerant bacterial strains from Palar river basin: impact of tannery pollution. Res. J. Environ. Earth Sci. 2 112–117
Tajer-Mohammad-Ghazvini P, Kasra-Kermanshahi R, Nozad-Golikand A, et al. 2014 Isolation and characterization of a novel magnetotactic bacterium from Iran: Iron uptake and producing magnetic nanoparticles in Alphaproteobacterium MTB-KTN90. Jundishapur J. Microbiol. 7 e19343
Article PubMed PubMed Central Google Scholar
Tamura K, Nei M and Kumar S 2004 Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 101 11030–11035
Article CAS PubMed PubMed Central Google Scholar
Tamura K, Stecher G and Kumar S 2021 MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 3022–3027
Article CAS PubMed PubMed Central Google Scholar
Vargas G, Cypriano J, Correa T, et al. 2018 Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23 2438
Article PubMed PubMed Central Google Scholar
Vihodceva S, Šutka A, Sihtmäe M, Rosenberg M, et al. 2021 Antibacterial activity of positively and negatively charged hematite (α-Fe2O3) nanoparticles to Escherichia coli, Staphylococcus aureus and Vibrio fischeri. Nanomaterials 11 652
Comments (0)