Freund, Y., Cohen-Aubart, F., and Bloom, B., Acute pulmonary embolism: A review, Jama, 2022, vol. 328, no. 13, pp. 1336–1345.
Article CAS PubMed Google Scholar
Konstantinides, S.V., Meyer, G., Becattini, C., Bueno, H., Geersing, G.-J., Harjola, V.-P., Huisman, M.V., Humbert, M., Jennings, C.S., and Jiménez, D., 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS) The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC), Eur. Heart J., 2020, vol. 41, no. 4, pp. 543–603.
ten Wolde, M., Söhne, M., Quak, E., Mac Gillavry, M.R., and Büller, H.R., Prognostic value of echocardiographically assessed right ventricular dysfunction in patients with pulmonary embolism, Arch. Intern. Med., 2004, vol. 164, no. 15, pp. 1685–1689.
Konstantinides, S., Pulmonary embolism: Impact of right ventricular dysfunction, Curr. Opin. Cardiol., 2005, vol. 20, no. 6, pp. 496–501.
Goldhaber, S.Z., Echocardiography in the management of pulmonary embolism, Ann. Intern. Med., 2002, vol. 136, no. 9, pp.691–700.
Benson, D.G., Schiebler, M.L., Nagle, S.K., and François, C.J., Magnetic resonance imaging for the evaluation of pulmonary embolism, Top. Magn. Reson. Imaging, 2017, vol. 26, no. 4, pp. 145–151.
Lega, J.-C., Lacasse, Y., Lakhal, L., and Provencher, S., Natriuretic peptides and troponins in pulmonary embolism: A meta-analysis, Thorax, 2009, vol. 64, no. 10, pp. 869–875.
Marques, F.Z., Prestes, P.R., Byars, S.G., Ritchie, S.C., Würtz, P., Patel, S.K., Booth, S.A., Rana, I., Minoda, Y., and Berzins, S.P., Experimental and human evidence for lipocalin-2 (neutrophil gelatinase-associated lipocalin [NGAL]) in the development of cardiac hypertrophy and heart failure, J. Am. Heart Assoc., 2017, vol. 6, no. 6, p. e005971.
Article PubMed PubMed Central Google Scholar
Abella, V., Scotece, M., Conde, J., Gómez, R., Lois, A., Pino, J., Gómez-Reino, J.J., Lago, F., Mobasheri, A., and Gualillo, O., The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases, Biomarkers, 2015, vol. 20, no. 8, pp. 565–571.
Article CAS PubMed PubMed Central Google Scholar
Wang, L., Xie, W., Li, G., Hu, B., Wu, W., Zhan, L., and Zou, H., Lipocalin 10 as a new prognostic biomarker in sepsis-induced myocardial dysfunction and mortality: A pilot study, Mediators Inflammation, 2021, vol. 2021, p. 6616270.
Pitashny, M., Schwartz, N., Qing, X., Hojaili, B., Aranow, C., Mackay, M., and Putterman, C., Urinary lipocalin-2 is associated with renal disease activity in human lupus nephritis, Arthritis Rheum., 2007, vol. 56, no. 6, pp. 1894–1903.
Article CAS PubMed Google Scholar
Yu, H., Liu, Z., Lu, J., Yang, X., Yan, X.-X., Mi, Y., Hua, L., Li, Y., Jing, Z.-C., and Du, J., Lipocalin-2 predicts long-term outcome of normotensive patients with acute pulmonary embolism, Cardiovasc. Toxicol., 2020, vol. 20, pp. 101–110.
Ucar, E.Y., Update on thrombolytic therapy in acute pulmonary thromboembolism, Eurasian J. Med., 2019, vol. 51, no. 2, p. 186.
CAS PubMed PubMed Central Google Scholar
Chemla, D., Castelain, V., Provencher, S., Humbert, M., Simonneau, G., and Hervé, P., Evaluation of various empirical formulas for estimating mean pulmonary artery pressure by using systolic pulmonary artery pressure in adults, Chest, 2009, vol. 135, no. 3, pp. 760–768.
Investigators, P., Value of the ventilation/perfusion scan in acute pulmonary embolism. Results of the prospective investigation of pulmonary embolism diagnosis (P-IOPED), Jama, 1990, vol. 263, no. 20, pp. 2753–2759.
Meyer, T., Binder, L., Hruska, N., Luthe, H., and Buchwald, A.B., Cardiac troponin I elevation in acute pulmonary embolism is associated with right ventricular dysfunction, J. Am. Coll. Cardiol., 2000, vol. 36, no. 5, pp. 1632–1636.
Article CAS PubMed Google Scholar
Klok, F.A., Mos, I.C., and Huisman, M.V., Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: A systematic review and meta-analysis, Am. J. Respir. Crit. Care Med., 2008, vol. 178, no. 4, pp. 425–430.
Li, D., Yan Sun, W., Fu, B., Xu, A., and Wang, Y., Lipocalin-2—The myth of its expression and function, Basic Clin. Pharmacol. Toxicol., 2020, vol. 127, no. 2, pp. 142–151.
Article CAS PubMed Google Scholar
Xiao, X., Yeoh, B.S., and Vijay-Kumar, M., Lipocalin 2: An emerging player in iron homeostasis and inflammation, Annu. Rev. Nutr., 2017, vol. 37, pp. 103–130.
Article CAS PubMed Google Scholar
Yndestad, A., Landrø, L., Ueland, T., Dahl, C.P., Flo, T.H., Vinge, L.E., Espevik, T., Frøland, S.S., Husberg, C., and Christensen, G., Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure, Eur. Heart J., 2009, vol. 30, no. 10, pp. 1229–1236.
Article CAS PubMed Google Scholar
Li, Q., Li, Y., Huang, W., Wang, X., Liu, Z., Chen, J., Fan, Y., Peng, T., Sadayappan, S., Wang, Y., and Fan, G.-C., Lipocalin 10 deficiency exacerbates diabetes-induced cardiac dysfunction via disruption of Nr4a1-mediated anti-inflammatory response in macrophages, Front. Immunol., 2022, vol. 13, p. 930397.
Comments (0)