Miyajima, M., Amino acids: Key sources for immunometabolites and immunotransmitters, Int. Immunol., 2020, vol. 32, no. 7, pp. 435–446. https://doi.org/10.1093/intimm/dxaa019
Article CAS PubMed Google Scholar
Hung, K.Y., Chen, Y.M., Wang, C.C., Wang, Y.H., Lin, C.Y., Chang, Y.T., Huang, K.T., Lin, M.C., and Fang, W.F., Insufficient nutrition and mortality risk in septic patients admitted to ICU with the focus on immune dysfunction, Nutrients, 2019, vol. 11, pp. 367–377. https://doi.org/10.3390/nu11020367
Article CAS PubMed PubMed Central Google Scholar
Bonvini, A., Coqueiro, A.Y., Tirapegui, J., Calder, P.C., and Rogero, M.M., Immunoregulatory role of branched-chain amino acids, Nutr. Rev., 2018, vol. 76, pp. 840–856. https://doi.org/10.1093/nutrit/nuy037
Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sanchez, M.S., Vasquez, C., Peiro, C., Egido, J., and Mas, S., High concentration of branched-chain amino acid promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORS1 activation, Free Radic. Biol. Med., 2017, vol. 104, pp. 165–177. https://doi.org/10.1016/j.freeradbiomed.2017.01.009
De Oliveira, D.C., da Silva Lima, F., Sartori, T., Santos, A.C.A., Rogero, M.M., and Fock, R.A., Glutamine metabolism and its effects on immune response: Molecular mechanism and gene expression, Nutrire, 2016, vol. 41, pp. 14–24. https://doi.org/10.1186/s41110-016-0016-8
Tome, D., Amino acid metabolism and signaling pathways: Potential targets in the control of infection and immunity, Eur. J. Clin. Nutr., 2021, vol. 75, pp. 1319–1327. https://doi.org/10.1038/s41430-021-00943-0
Article CAS PubMed Central Google Scholar
Kelly, B. and Pearce, E.L., Amino assets: How amino acids support immunity, Cell Metab., 2020, vol. 32, pp. 154–175. https://doi.org/10.1016/j.cmet.2020.06.010
Pechkovskii, D.V. and Potapnev, M.P., Mechanisms of phagocytosis and bactericidal activity of human neutrophils, Zdravookhr. Beloruss., 1994, no. 6, pp. 39–44.
De Oliveira-Junior, E.B., Bustamante, J., Newburger, P.E., and Condino-Neto, A., The human NADPH oxidase: Primary and secondary defects impairing the respiratory burst function and microbicidal ability of phagocytes, Scand. J. Immunol., 2011, vol. 73, pp. 420–427. https://doi.org/10.1111/j.1365-3083.2010.02501.x
Article CAS PubMed Google Scholar
El-Benna, J., Hurtado-Nedelec, M., Marzaioli, V., Marie, J.C., Gougerot-Pocidalo, M.A., and Dang, P.M.C., Priming of the neutrophil respiratory burst: Role in host defense and inflammation, Immunol. Rev., 2016, 273, pp. 180–193. https://doi.org/10.1111/imr.12447
Article CAS PubMed Google Scholar
Thomas, D.C., The phagocyte respiratory burst: Historical perspectives and recent advances, Immunol. Lett., 2017, vol. 192, pp. 88–96. https://doi.org/10.1016/j.imlet.2017.08.016
Article CAS PubMed Google Scholar
Peck, R., A one-plate assay for macrophage bactericidal activity, J. Immunol. Methods, 1985, vol. 82, no. 1, pp. 131–140.
Article CAS PubMed Google Scholar
Hallgren, R. and Stalenheim, G., Quantification of phagocytosis by human neutrophils. The use of radiolabelled staphylococcal protein A-IgG complexes, Immunology, 1976, vol. 30, pp. 755–762.
Samotrueva, M.A., Ozerov, A.A., Starikova, A.A., Gabitova, N.M., Merezhkina, D.V., Tsibizova, A.A., and Tyurenkov, I.N., Antimicrobial activity of new quinazolin-4(3H)-ones against Staphylococcus aureus and Streptococcus pneumonia, Farm. Farmakol., 2021, vol. 9, no. 4, pp. 318–329.
Rothe, G., Emmendorffer, A., Oser, A., Roesler, J., and Valet, G., Flow cytometric measurement of the respiratory burst activity of phagocytes using dihydrorhodamine 123, J. Immunol. Methods, 1991, vol. 138, pp. 133–135.
Article CAS PubMed Google Scholar
Hampton, M.B., Kettle, A.J., and Winterbourn, C.C., Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing, Blood, 1998, vol. 92, no. 9, pp. 3007–3017.
Article CAS PubMed Google Scholar
Potapnev, M.P., Hushchyna, L.M., and Moroz, L.A., Human neutrophils subpopulations and functions heterogeneity in norm and pathology, Immunologiya (Moscow, Russ. Fed.), 2019, vol. 40, no. 5, pp. 84–96. https://doi.org/10.24411/0206-4952-2019-15009
Pechkovsky, D.V., Potapnev, M.P., and Zalutskaya, O.M., Different patterns of cytokine regulation of phagocytosis and bacterial killing by human neutrophils, Int. J. Antimicrob. Agents, 1996, vol. 7, no. 1, pp. 33–40.
Article CAS PubMed Google Scholar
Dolgushin, I.I., Mezentseva, E.A., Savochkina, A.Yu., and Kuznetsova, E.K., Neutrophil as a “multifunctional device” of the immune system, Infekts. Immun., 2019, vol. 9, no. 1, pp. 9–38. https://doi.org/10.15789/2220-7619-2019-1-9-38
Ley, K., Hoffman, H.M., Kubes, P., Cassatella, M., Zyclinsky, A., Hedrick, C.C. and Catz, S.D., Neutrophils: New insights and open questions, Sci. Immunol. Rev., 2018, vol. 3, p. eaat4579.
Mukhin, V.E., Pankrat’eva, L.L., Mileva, O.I., Yartsev, M.N., and Vologin, N.N., The significance of morphological and functional characteristics of neutrophils of premature newborns in the development of neonatal infections, Immunologiya (Moscow, Russ. Fed.), 2021, vol. 42, no. 2, pp. 140–147. https://doi.org/10.33029/0206-4952-2021-42-2-140-147
Savchenko, A.A., Kudryavtsev, I.V., and Borisov, A.G., Methods of estimation and the role of respiratory explosion in the pathogenesis of infectious and inflammatory diseases, Infekts. Immun., 2017, vol. 7, no. 4, pp. 327–340.
Jedrzejewski, T., Sobocinska, J., Pawlinkowska, M., Dzialuk, A., and Wrotek, S., Dual effect of the extract from fungus Coriolus versicolor on lipopolysaccharide-induced cytokine production in RAW 264.7 macrophages depending on the lipopolysaccharide concentration, J. Inflammation Res., 2022, vol. 15, pp. 3599–3611. https://doi.org/10.2147/jir.s364945
Comments (0)