Deciphering the molecular choreography of Janus kinase 2 inhibition via Gaussian accelerated molecular dynamics simulations: a dynamic odyssey

Harpur AG, Andres AC, Ziemiecki A et al (1992) JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7:1347–1353

CAS  PubMed  Google Scholar 

Sasaki A, Yasukawa H, Suzuki A et al (1999) Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells 4:339–351. https://doi.org/10.1046/j.1365-2443.1999.00263.x

Article  CAS  PubMed  Google Scholar 

O’Shea JJ, Gadina M, Schreiber RD (2002) Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109(Suppl):S121-131. https://doi.org/10.1016/s0092-8674(02)00701-8

Article  PubMed  Google Scholar 

Williams NK, Bamert RS, Patel O et al (2009) Dissecting Specificity in the Janus kinases: the structures of JAK-Specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains. J Mol Biol 387:219–232. https://doi.org/10.1016/j.jmb.2009.01.041

Article  CAS  PubMed  Google Scholar 

Welsch K, Holstein J, Laurence A, Ghoreschi K (2017) Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 47:1096–1107. https://doi.org/10.1002/eji.201646680

Article  CAS  PubMed  Google Scholar 

Banfield C, Scaramozza M, Zhang W et al (2018) The safety, tolerability, pharmacokinetics, and pharmacodynamics of a TYK2/JAK1 Inhibitor (PF-06700841) in healthy subjects and patients with plaque psoriasis. J Clin Pharmacol 58:434–447. https://doi.org/10.1002/jcph.1046

Article  CAS  PubMed  Google Scholar 

Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283. https://doi.org/10.1242/jcs.00963

Article  CAS  PubMed  Google Scholar 

O’Shea JJ, Plenge R (2012) JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 36:542–550. https://doi.org/10.1016/j.immuni.2012.03.014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063. https://doi.org/10.1074/jbc.R700016200

Article  CAS  PubMed  Google Scholar 

Yan Z, Gibson SA, Buckley JA et al (2018) Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 189:4–13. https://doi.org/10.1016/j.clim.2016.09.014

Article  CAS  PubMed  Google Scholar 

Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3:900–911. https://doi.org/10.1038/nri1226

Article  CAS  PubMed  Google Scholar 

O’Shea JJ, Schwartz DM, Villarino AV et al (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328. https://doi.org/10.1146/annurev-med-051113-024537

Article  CAS  PubMed  PubMed Central  Google Scholar 

Babon JJ, Lucet IS, Murphy JM et al (2014) The molecular regulation of Janus kinase (JAK) activation. Biochem J 462:1–13. https://doi.org/10.1042/BJ20140712

Article  CAS  PubMed  Google Scholar 

Farmer LJ, Ledeboer MW, Hoock T et al (2015) Discovery of VX-509 (Decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 58:7195–7216. https://doi.org/10.1021/acs.jmedchem.5b00301

Article  CAS  PubMed  Google Scholar 

Roskoski R (2016) Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res 111:784–803. https://doi.org/10.1016/j.phrs.2016.07.038

Article  CAS  PubMed  Google Scholar 

Taylor SS, Keshwani MM, Steichen JM, Kornev AP (2012) Evolution of the eukaryotic protein kinases as dynamic molecular switches. Philos Trans R Soc Lond B Biol Sci 367:2517–2528. https://doi.org/10.1098/rstb.2012.0054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meharena HS, Chang P, Keshwani MM et al (2013) Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 11:e1001680. https://doi.org/10.1371/journal.pbio.1001680

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chatti K, Farrar WL, Duhé RJ (2004) Tyrosine phosphorylation of the Janus kinase 2 activation loop is essential for a high-activity catalytic state but dispensable for a Basal Catalytic State. Biochemistry 43:4272–4283. https://doi.org/10.1021/bi036109b

Article  CAS  PubMed  Google Scholar 

Feng J, Witthuhn BA, Matsuda T et al (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol Cell Biol 17:2497–2501. https://doi.org/10.1128/MCB.17.5.2497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ung PM-U, Schlessinger A (2015) DFGmodel: predicting protein kinase structures in inactive states for structure-based discovery of type-II inhibitors. ACS Chem Biol 10:269–278. https://doi.org/10.1021/cb500696t

Article  CAS  PubMed  Google Scholar 

McInnes C, Mezna M, Kontopidis G (2006) Catch the kinase conformer. Chem Biol 13:693–694. https://doi.org/10.1016/j.chembiol.2006.07.001

Article  CAS  PubMed  Google Scholar 

Kornev AP, Taylor SS, Eyck LFT (2008) A helix scaffold for the assembly of active protein kinases. Proc Natl Acad Sci USA 105:14377–14382. https://doi.org/10.1073/pnas.0807988105

Article  ADS  PubMed  PubMed Central  Google Scholar 

Kong X, Sun H, Pan P et al (2017) How does the L884P mutation confer resistance to Type-II inhibitors of JAK2 kinase: a comprehensive molecular modeling study. Sci Rep 7:9088. https://doi.org/10.1038/s41598-017-09586-3

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Li JJ, Tu J, Cheng P et al (2016) Insights into DFG-in and DFG-out JAK2 binding modes for a rational strategy of type II inhibitors combined computational study. RSC Adv 6:45540–45552. https://doi.org/10.1039/C6RA06266K

Article  ADS  CAS  Google Scholar 

Zhao Z, Wu H, Wang L et al (2014) Exploration of type II binding mode: a privileged approach for kinase inhibitor focused drug discovery? ACS Chem Biol 9:1230–1241. https://doi.org/10.1021/cb500129t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Y, Gray NS (2006) Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol 2:358–364. https://doi.org/10.1038/nchembio799

Article  CAS  PubMed  Google Scholar 

Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andraos R, Qian Z, Bonenfant D et al (2012) Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Cancer Discov 2:512–523. https://doi.org/10.1158/2159-8290.CD-11-0324

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao Y, McCammon JA (2017) Gaussian accelerated molecular dynamics: theory, implementation, and applications. Annu Rep Comput Chem 13:231–278. https://doi.org/10.1016/bs.arcc.2017.06.005

Article  PubMed  PubMed Central  Google Scholar 

Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584–3595. https://doi.org/10.1021/acs.jctc.5b00436

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ichiye T, Karplus M (1991) Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins 11:205–217. https://doi.org/10.1002/prot.340110305

Article  CAS  PubMed  Google Scholar 

Miller BR, McGee TD, Swails JM et al (2012) MMPBSA.py: an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321. https://doi.org/10.1021/ct300418h

Article  CAS  PubMed  Google Scholar 

Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897. https://doi.org/10.1021/ar000033j

Article  CAS 

Comments (0)

No login
gif