Genome editing based trait improvement in crops: current perspective, challenges and opportunities

Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food. 2022;6:1–17. https://doi.org/10.1080/21645698.2022.2120313.

Article  Google Scholar 

Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4. https://doi.org/10.1038/nature24049.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, Sharma S, Jain S, Ray A, Jain S, Ramalingam S, Maiti S, Chakraborty D. Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci USA. 2019;116(42):20959–68. https://doi.org/10.1073/pnas.1818461116.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice. 2020;13(1):20. https://doi.org/10.1186/s12284-020-00380-w.

Article  PubMed  PubMed Central  Google Scholar 

Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Abdelsalam NR, Xu JH. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in Rice (Oryza sativa L.). Plants (Basel). 2022;11(9):1184. https://doi.org/10.3390/plants11091184.

Article  CAS  PubMed  Google Scholar 

Alfatih A, Wu J, Jan SU, Zhang ZS, Xia JQ, Xiang CB. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ. 2020;43(11):2743–54. https://doi.org/10.1111/pce.13856.

Article  CAS  PubMed  Google Scholar 

Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16:238. https://doi.org/10.1186/s13059-015-0799-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6:26912. https://doi.org/10.1038/srep26912.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, Levy JM, Mercer JAM, Liu DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40. https://doi.org/10.1038/s41587-021-01133-w.

Article  CAS  PubMed  Google Scholar 

Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE. 2020;15(8):e0237018. https://doi.org/10.1371/journal.pone.0237018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Awasthi R, Bhandari K, Nayyar H. Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci. 2015;3:11. https://doi.org/10.3389/fenvs.2015.00011.

Article  Google Scholar 

Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani KN, Singh J, Kesarwani AK, Tiwari S. Transgene-free genome editing supports CCD4 role as a negative regulator of β-carotene in banana. J Exp Bot. 2022;73:erac042. https://doi.org/10.1093/jxb/erac042.

Article  CAS  Google Scholar 

Badhan S, Ball AS, Mantri N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci. 2021;22(1):396. https://doi.org/10.3390/ijms22010396.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baeg GJ, Kim SH, Choi DM, Tripathi S, Han YJ, Kim JI. CRISPR/Cas9-mediated mutation of 5-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis. Plant Biotechnol Rep. 2021;15:753–64. https://doi.org/10.1007/s11816-021-00718-w.

Article  CAS  Google Scholar 

Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell. 2014;26(1):151–63. https://doi.org/10.1105/tpc.113.119792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. Conferring resistance to geminiviruses with the CRISPR/Cas prokaryotic immune system. Nat Plants. 2015;1(10):15145. https://doi.org/10.1038/nplants.2015.145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ben Shlush I, Samach A, Melamed-Bessudo C, Ben-Tov D, Dahan-Meir T, Filler-Hayut S, Levy AA. CRISPR/Cas9 induced somatic recombination at the CRTISO locus in tomato. Genes (Basel). 2020;12(1):59. https://doi.org/10.3390/genes12010059.

Article  CAS  PubMed  Google Scholar 

Beracochea V, Stritzler M, Radonic L, Bottero E, Jozefkowicz C, Darqui F, Ayub N, Bilbao ML, Soto G. CRISPR/Cas9-mediated knockout of SPL13 radically increases lettuce yield. Plant Cell Rep. 2023;42(3):645–7. https://doi.org/10.1007/s00299-022-02952-0.

Article  CAS  PubMed  Google Scholar 

Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes Genomes Genet. 2018;8(5):1513–21. https://doi.org/10.1534/g3.117.300396.

Article  CAS  Google Scholar 

Beying N, Schmidt C, Pacher M, Houben A, Puchta H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat Plants. 2020;6(6):638–45. https://doi.org/10.1038/s41477-020-0663-x.

Article  CAS  PubMed  Google Scholar 

Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, Anand T. CRISPR/Cas-based modifications for therapeutic applications: a review. Mol Biotechnol. 2022;64(4):355–72. https://doi.org/10.1007/s12033-021-00422-8.

Article  CAS  PubMed  Google Scholar 

Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel). 2020;11(3):272. https://doi.org/10.3390/genes11030272.

Article  CAS  PubMed  Google Scholar 

Buchholzer M, Frommer WB. An increasing number of countries regulate genome editing in crops. New Phytol. 2023;237(1):12–5. https://doi.org/10.1111/nph.18333.

Article  PubMed  Google Scholar 

Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G. A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods. 2016;12:18. https://doi.org/10.1186/s13007-016-0118-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai Q, Guo D, Cao Y, Li Y, Ma R, Liu W. Application of CRISPR/CasΦ2 system for genome editing in plants. Int J Mol Sci. 2022;23(10):5755. https://doi.org/10.3390/ijms23105755.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Calyxt, I.: First commercial sale of calyxt high oleic soybean oil on the U.S. Market. https://calyxt.com/first-commercial-sale-of-calyxt-high-oleic-soybean-oil-on-the-u-s-market/. (2019). Accessed 01 July 2023.

Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. Genome Biol. 2015;16:232. https://doi.org/10.1186/s13059-015-0796-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. 2016;17(7):1140–53. https://doi.org/10.1111/mpp.12375.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhary R, Singh S, Kaur K, Tiwari S. Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes confer their roles in somatic embryogenesis, growth and abiotic stresses in banana. 3 Biotech. 2022;12(11):321. https://doi.org/10.1007/s13205-022-03387-w.

Article  PubMed  PubMed Central  Google Scholar 

Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol. 2022;5(1):344. https://doi.org/10.1038/s42003-022-03308-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Che J, Yamaji N, Ma JF. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol. 2021;230(3):1049–62. https://doi.org/10.1111/nph.17219.

Article  CAS  PubMed  Google Scholar 

Chen H, Su Z, Tian B, Liu Y, Pang Y, Kavetskyi V, Trick HN, Bai G. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol J. 2022;20(6):1018–20. https://doi.org/10.1111/pbi.13819.

Article 

Comments (0)

No login
gif