Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food. 2022;6:1–17. https://doi.org/10.1080/21645698.2022.2120313.
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F. RNA targeting with CRISPR-Cas13. Nature. 2017;550(7675):280–4. https://doi.org/10.1038/nature24049.
Article CAS PubMed PubMed Central Google Scholar
Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, Sharma S, Jain S, Ray A, Jain S, Ramalingam S, Maiti S, Chakraborty D. Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci USA. 2019;116(42):20959–68. https://doi.org/10.1073/pnas.1818461116.
Article CAS PubMed PubMed Central Google Scholar
Akama K, Akter N, Endo H, Kanesaki M, Endo M, Toki S. An in vivo targeted deletion of the calmodulin-binding domain from rice glutamate decarboxylase 3 (OsGAD3) increases γ-aminobutyric acid content in grains. Rice. 2020;13(1):20. https://doi.org/10.1186/s12284-020-00380-w.
Article PubMed PubMed Central Google Scholar
Alam MS, Kong J, Tao R, Ahmed T, Alamin M, Alotaibi SS, Abdelsalam NR, Xu JH. CRISPR/Cas9 mediated knockout of the OsbHLH024 transcription factor improves salt stress resistance in Rice (Oryza sativa L.). Plants (Basel). 2022;11(9):1184. https://doi.org/10.3390/plants11091184.
Article CAS PubMed Google Scholar
Alfatih A, Wu J, Jan SU, Zhang ZS, Xia JQ, Xiang CB. Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ. 2020;43(11):2743–54. https://doi.org/10.1111/pce.13856.
Article CAS PubMed Google Scholar
Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16:238. https://doi.org/10.1186/s13059-015-0799-6.
Article CAS PubMed PubMed Central Google Scholar
Ali Z, Ali S, Tashkandi M, Zaidi SS, Mahfouz MM. CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep. 2016;6:26912. https://doi.org/10.1038/srep26912.
Article CAS PubMed PubMed Central Google Scholar
Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, Levy JM, Mercer JAM, Liu DR. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40. https://doi.org/10.1038/s41587-021-01133-w.
Article CAS PubMed Google Scholar
Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PLoS ONE. 2020;15(8):e0237018. https://doi.org/10.1371/journal.pone.0237018.
Article CAS PubMed PubMed Central Google Scholar
Awasthi R, Bhandari K, Nayyar H. Temperature stress and redox homeostasis in agricultural crops. Front Environ Sci. 2015;3:11. https://doi.org/10.3389/fenvs.2015.00011.
Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani KN, Singh J, Kesarwani AK, Tiwari S. Transgene-free genome editing supports CCD4 role as a negative regulator of β-carotene in banana. J Exp Bot. 2022;73:erac042. https://doi.org/10.1093/jxb/erac042.
Badhan S, Ball AS, Mantri N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in chickpea protoplasts. Int J Mol Sci. 2021;22(1):396. https://doi.org/10.3390/ijms22010396.
Article CAS PubMed PubMed Central Google Scholar
Baeg GJ, Kim SH, Choi DM, Tripathi S, Han YJ, Kim JI. CRISPR/Cas9-mediated mutation of 5-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis. Plant Biotechnol Rep. 2021;15:753–64. https://doi.org/10.1007/s11816-021-00718-w.
Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF. DNA replicons for plant genome engineering. Plant Cell. 2014;26(1):151–63. https://doi.org/10.1105/tpc.113.119792.
Article CAS PubMed PubMed Central Google Scholar
Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. Conferring resistance to geminiviruses with the CRISPR/Cas prokaryotic immune system. Nat Plants. 2015;1(10):15145. https://doi.org/10.1038/nplants.2015.145.
Article CAS PubMed PubMed Central Google Scholar
Ben Shlush I, Samach A, Melamed-Bessudo C, Ben-Tov D, Dahan-Meir T, Filler-Hayut S, Levy AA. CRISPR/Cas9 induced somatic recombination at the CRTISO locus in tomato. Genes (Basel). 2020;12(1):59. https://doi.org/10.3390/genes12010059.
Article CAS PubMed Google Scholar
Beracochea V, Stritzler M, Radonic L, Bottero E, Jozefkowicz C, Darqui F, Ayub N, Bilbao ML, Soto G. CRISPR/Cas9-mediated knockout of SPL13 radically increases lettuce yield. Plant Cell Rep. 2023;42(3):645–7. https://doi.org/10.1007/s00299-022-02952-0.
Article CAS PubMed Google Scholar
Bertier LD, Ron M, Huo H, Bradford KJ, Britt AB, Michelmore RW. High-resolution analysis of the efficiency, heritability, and editing outcomes of CRISPR/Cas9-induced modifications of NCED4 in lettuce (Lactuca sativa). G3 Genes Genomes Genet. 2018;8(5):1513–21. https://doi.org/10.1534/g3.117.300396.
Beying N, Schmidt C, Pacher M, Houben A, Puchta H. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nat Plants. 2020;6(6):638–45. https://doi.org/10.1038/s41477-020-0663-x.
Article CAS PubMed Google Scholar
Bharathkumar N, Sunil A, Meera P, Aksah S, Kannan M, Saravanan KM, Anand T. CRISPR/Cas-based modifications for therapeutic applications: a review. Mol Biotechnol. 2022;64(4):355–72. https://doi.org/10.1007/s12033-021-00422-8.
Article CAS PubMed Google Scholar
Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A, Zouine M. Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes (Basel). 2020;11(3):272. https://doi.org/10.3390/genes11030272.
Article CAS PubMed Google Scholar
Buchholzer M, Frommer WB. An increasing number of countries regulate genome editing in crops. New Phytol. 2023;237(1):12–5. https://doi.org/10.1111/nph.18333.
Budhagatapalli N, Schedel S, Gurushidze M, Pencs S, Hiekel S, Rutten T, Kusch S, Morbitzer R, Lahaye T, Panstruga R, Kumlehn J, Hensel G. A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods. 2016;12:18. https://doi.org/10.1186/s13007-016-0118-6.
Article CAS PubMed PubMed Central Google Scholar
Cai Q, Guo D, Cao Y, Li Y, Ma R, Liu W. Application of CRISPR/CasΦ2 system for genome editing in plants. Int J Mol Sci. 2022;23(10):5755. https://doi.org/10.3390/ijms23105755.
Article CAS PubMed PubMed Central Google Scholar
Calyxt, I.: First commercial sale of calyxt high oleic soybean oil on the U.S. Market. https://calyxt.com/first-commercial-sale-of-calyxt-high-oleic-soybean-oil-on-the-u-s-market/. (2019). Accessed 01 July 2023.
Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. Genome Biol. 2015;16:232. https://doi.org/10.1186/s13059-015-0796-9.
Article CAS PubMed PubMed Central Google Scholar
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. 2016;17(7):1140–53. https://doi.org/10.1111/mpp.12375.
Article CAS PubMed PubMed Central Google Scholar
Chaudhary R, Singh S, Kaur K, Tiwari S. Genome-wide identification and expression profiling of WUSCHEL-related homeobox (WOX) genes confer their roles in somatic embryogenesis, growth and abiotic stresses in banana. 3 Biotech. 2022;12(11):321. https://doi.org/10.1007/s13205-022-03387-w.
Article PubMed PubMed Central Google Scholar
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol. 2022;5(1):344. https://doi.org/10.1038/s42003-022-03308-w.
Article CAS PubMed PubMed Central Google Scholar
Che J, Yamaji N, Ma JF. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol. 2021;230(3):1049–62. https://doi.org/10.1111/nph.17219.
Article CAS PubMed Google Scholar
Chen H, Su Z, Tian B, Liu Y, Pang Y, Kavetskyi V, Trick HN, Bai G. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol J. 2022;20(6):1018–20. https://doi.org/10.1111/pbi.13819.
Comments (0)