Cas9 variants expand the targeting scope of base editing systems in bacteria

Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell. 2020;182:463-480.e30. https://doi.org/10.1016/j.cell.2020.05.037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Branton SA, Ghorbani A, Bolt BN, Fifield H, Berghuis LM, Larijani M. Activation-induced cytidine deaminase can target multiple topologies of double-stranded DNA in a transcription-independent manner. FASEB J. 2020;34:9245–68. https://doi.org/10.1096/fj.201903036RR.

Article  CAS  PubMed  Google Scholar 

Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature. 2003;422:726–30. https://doi.org/10.1038/nature01574.

Article  CAS  PubMed  Google Scholar 

Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, et al. A golden gate modular cloning toolbox for plants. ACS Synth Biol. 2014;3:839–43. https://doi.org/10.1021/sb4001504.

Article  CAS  PubMed  Google Scholar 

Garibyan L, Huang T, Kim M, Wolff E, Nguyen A, Nguyen T, et al. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair. 2003;2:593–608. https://doi.org/10.1016/S1568-7864(03)00024-7.

Article  CAS  PubMed  Google Scholar 

Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017;551:464–71. https://doi.org/10.1038/nature24644.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hammerling MJ, Gollihar J, Mortensen C, Alnahhas RN, Ellington AD, Barrick JE. Expanded genetic codes create new mutational routes to rifampicin resistance in Escherichia coli. Mol Biol Evol. 2016;33:2054–63. https://doi.org/10.1093/molbev/msw094.

Article  CAS  PubMed  Google Scholar 

Hess GT, Tycko J, Yao D, Bassik MC. Methods and Applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017;68:26–43. https://doi.org/10.1016/j.molcel.2017.09.029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hua K, Tao X, Yuan F, Wang D, Zhu JK. Precise A·T to G·C base editing in the rice genome. Mol Plant. 2018;11:627–30. https://doi.org/10.1016/j.molp.2018.02.007.

Article  CAS  PubMed  Google Scholar 

Hua K, Tao X, Zhu JK. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnol J. 2019;17:499–504. https://doi.org/10.1111/pbi.12993.

Article  PubMed  Google Scholar 

Huang TP, Zhao KT, Miller SM, Gaudelli NM, Oakes BL, Fellmann C, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. 2019;37:626–31. https://doi.org/10.1038/s41587-019-0134-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. 2017;35:371–6. https://doi.org/10.1038/nbt.3803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. 2015;33:1293–8. https://doi.org/10.1038/nbt.3404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kluesner MG, Nedveck DA, Lahr WS, Garbe JR, Abrahante JE, Webber BR, et al. EditR: A method to quantify base editing from Sanger sequencing. CRISPR J. 2018;1:239–50. https://doi.org/10.1089/crispr.2018.0014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4. https://doi.org/10.1038/nature17946.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei Z, Meng H, Lv Z, Liu M, Zhao H, Wu H, et al. Detect-seq reveals out-of-protospacer editing and target-strand editing by cytosine base editors. Nat Methods. 2021;18:643–51. https://doi.org/10.1038/s41592-021-01172-w.

Article  CAS  PubMed  Google Scholar 

Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. Nat Plants. 2021;1166–87. https://doi.org/10.1038/s41477-021-00991-1

Mukai T, Lajoie MJ, Englert M, Söll D. Rewriting the genetic code. Ann Rev Microbiol. 2017;71:557–77. https://doi.org/10.1146/annurev-micro-090816-093247.

Article  CAS  Google Scholar 

Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:6436. https://doi.org/10.1126/science.aaf8729.

Article  CAS  Google Scholar 

Pirman NL, Barber KW, Aerni HR, Ma NJ, Haimovich AD, Rogulina S, et al. A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat Commun. 2015;6. https://doi.org/10.1038/ncomms9130

Qin R, Li J, Li H, Zhang Y, Liu X, Miao Y, et al. Developing a highly efficient and wildly adaptive CRISPR-SaCas9 toolset for plant genome editing. Plant Biotechnol J. 2019;17:706–8. https://doi.org/10.1111/pbi.13047.

Article  PubMed  PubMed Central  Google Scholar 

Rallapalli KL, Komor AC. The design and application of DNA-editing enzymes as base editors. Annu Rev Biochem. 2023;92:43–79. https://doi.org/10.1146/annurev-biochem-052521-013938.

Article  CAS  PubMed  Google Scholar 

Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;770–88. https://doi.org/10.1038/s41576-018-0059-1

Richter MF, Zhao KT, Eton E, Lapinaite A, Newby GA, Thuronyi BW, et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat Biotechnol. 2020;38:883–91. https://doi.org/10.1038/s41587-020-0453-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shelake RM, Pramanik D, Kim J-Y. CRISPR base editor-based targeted random mutagenesis (BE-TRM) toolbox for directed evolution. BMB Rep. 2024;57:30–9. https://doi.org/10.5483/BMBRep.2023-0086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shelake RM, Pramanik D, Kim JY. Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium Escherichia coli. mBio. 2023;14. https://doi.org/10.1128/mbio.02296-22

Shelake RM, Pramanik D, Kim JY. In vivo rapid investigation of CRISPR-based base editing components in Escherichia coli (IRI-CCE): A platform for evaluating base editing tools and their components. Int J Mol Sci. 2022;23:1145. https://doi.org/10.3390/ijms23031145.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Sun T, Xu J, Shen Z, Briggs SP, Zhou D, Wang L. Response and adaptation of Escherichia coli to suppression of the amber stop codon. ChemBioChem. 2014;15(12):1744–9. https://doi.org/10.1002/cbic.201402235.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang Z, Fu Y, Zhao J, Zhang F, Li S, Zhao M, et al. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing. Genomics Proteomics Bioinformatics. 2022. https://doi.org/10.1016/j.gpb.2022.12.003.

Article  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif