Yang S, Andras LM, Redding GJ et al (2016) Early-onset scoliosis: a review of history, current treatment, and future directions. Pediatrics 137(1):e20150709
Smith JR, Samdani AF, Pahys J et al (2009) The role of bracing, casting, and vertical expandable prosthetic titanium rib for the treatment of infantile idiopathic scoliosis: a single-institution experience with 31 consecutive patients. Clinical article J Neurosurg Spine 11(1):3–8
Moe JH, Kharrat K, Winter RB et al (1984) Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children. Clin Orthop Relat Res 185:35–45
Goldberg CJ, Gillic I, Connaughton O et al (2003) Respiratory function and cosmesis at maturity in infantile-onset scoliosis. Spine 28(20):2397–2406
Article CAS PubMed Google Scholar
Skaggs DL, Akbarnia BA, Flynn JM et al (2014) Chest wall and spine deformity study group; growing spine study group; pediatric orthopaedic society of north america; scoliosis research society growing spine study committee. A classification of growth friendly spine implants. J Pediatr Orthop 34(3):260–274
Varley ES, Pawelek JB, Mundis GM Jr, Oetgen ME, Sturm PF, Akbarnia BA (2021) Pediatric spine study group; Yaszay B. The role of traditional growing rods in the era of magnetically controlled growing rods for the treatment of early-onset scoliosis. Spine Deform 9(5):1465–1472. https://doi.org/10.1007/s43390-021-00332-4
Akbarnia BA, Mundis GM (2019) Magnetically controlled growing rods in early onset scoliosis. Indications, timing and treatment. Orthopäde 48:477–485. https://doi.org/10.1007/s00132-019-03755-0
Article CAS PubMed Google Scholar
Guiroy A, Sícoli A, Masanés NG et al (2018) How to perform the Wiltse posterolateral spinal approach: technical note. Surg Neurol Int 14(9):38. https://doi.org/10.4103/sni.sni_344_17
Williams BA, Matsumoto H, McCalla DJ et al (2014) Development and initial validation of the classification of early-onset scoliosis (C-EOS). J Bone Joint Surg Am 96:1359e67
Klyce W, Mitchell SL, Pawelek J et al (2020) Characterizing use of growth-friendly implants for early-onset scoliosis: a 10-year update. J Pediatr Orthop 40(8):e740–e746. https://doi.org/10.1097/BPO.0000000000001594
Cheung KM, Cheung JP, Samartzis D et al (2012) Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series. Lancet 379(9830):1967–1974. https://doi.org/10.1016/S0140-6736(12)60112-3
Cheung JPY, Sze KY, Cheung KMC et al (2021) The first magnetically controlled growing rod (MCGR) in the world—lessons learned and how the identified complications helped to develop the implant in the past decade: case report. BMC Musculoskelet Disord 22(1):319. https://doi.org/10.1186/s12891-021-04181-0.PMID:33794851;PMCID:PMC8015050
Article PubMed PubMed Central Google Scholar
Bouthors C, Gaume M, Glorion C et al (2019) Outcomes at skeletal maturity of 34 children with scoliosis treated with a traditional single growing rod. Spine 44(23):1630–1637. https://doi.org/10.1097/BRS.0000000000003148
Akbarnia BA, Pawelek JB, Cheung KM et al (2014) Traditional growing rods versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched 2-year study. Spine Deform 2(6):493–497. https://doi.org/10.1016/j.jspd.2014.09.050
Helenius IJ (2020) Standard and magnetically controlled growing rods for the treatment of early onset scoliosis. Ann Transl Med 8(2):26. https://doi.org/10.21037/atm.2019.09.72
Article PubMed PubMed Central Google Scholar
Srivastava A, Pandita N, Gupta A et al (2023) Use of intra-operative internal distraction for the application of magnetically controlled growth rods (MCGR): a technique for maximizing correction in the rigid immature spine during index surgery. Spine Deform 11(1):225–235. https://doi.org/10.1007/s43390-022-00579-5
Dimeglio A, Canavese F (2012) The growing spine: how spinal deformities influence normal spine and thoracic cage growth. Eur Spine J 21(1):64–70. https://doi.org/10.1007/s00586-011-1983-3
Cengiz B, Ozdemir H, Sakaogullari A et al (2021) Traditional dual growing rod technique in the management of early onset scoliosis and its effects on spinal growth and lung development: the mid-term prospective results. Cureus 13(4):e14422. https://doi.org/10.7759/cureus.14422
Article PubMed PubMed Central Google Scholar
Shah SA, Karatas AF, Dhawale AA et al (2014) The effect of serial growing rod lengthening on the sagittal profile and pelvic parameters in early-onset scoliosis. Spine 39(22):E1311-7. https://doi.org/10.1097/BRS.0000000000000565
Ilharreborde B, Ponchelet L, Sales de Gauzy J et al (2022) How does magnetically controlled growing rods insertion affect sagittal alignment in ambulatory early onset scoliosis patients? Eur Spine J 31(4):1036–1044. https://doi.org/10.1007/s00586-021-07071-0
Erdoğan S, Polat B, Atıcı Y et al (2019) Comparison of the effects of magnetically controlled growing rod and tradiotinal growing rod techniques on the sagittal plane in the treatment of early-onset scoliosis. J Korean Neurosurg Soc 62(5):577–585. https://doi.org/10.3340/jkns.2019.0094
Article PubMed PubMed Central Google Scholar
Kwan KYH, Alanay A, Yazici M et al (2017) Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine 42(24):E1410–E1414. https://doi.org/10.1097/BRS.0000000000002297
Jones CS, Stokes OM, Patel SB et al (2015) Actuator pin fracture in magnetically controlled growing rods: two cases. Spine J 16(4):e287-291. https://doi.org/10.1016/j.spinee.2015.12.020
Cheung JPY, Yiu KKL, Samartzis D et al (2017) Rod lengthening with the magnetically controlled growing rod: factors influencing rod slippage and reduced gains during distractions. Spine 43(7):E399–E405. https://doi.org/10.1097/BRS.0000000000002358
Akbarnia BA, Breakwell LM, Marks DS et al (2008) Dual growing rod technique followed for three to eleven years until final fusion: the effect of frequency of lengthening. Spine 33:984–90
Gardner A, Beaven A, Marks D et al (2017) Does the law of diminishing returns apply to the lengthening of the MCGR rod in early onset scoliosis with reference to growth velocity? J Spine Surg 3(4):525–530. https://doi.org/10.21037/jss.2017.08.16
Article PubMed PubMed Central Google Scholar
Lampe LP, Schulze Bövingloh A, Gosheger G et al (2019) Magnetically controlled growing rods in treatment of early-onset scoliosis: a single center study with a minimum of 2-year-follow up and preliminary results after converting surgery. Spine 44(17):1201–1210. https://doi.org/10.1097/BRS.0000000000003048
Obid P, Yiu K, Cheung K et al (2021) Magnetically controlled growing rods in early onset scoliosis: radiological results, outcome, and complications in a series of 22 patients. Arch Orthop Trauma Surg 141(7):1163–1174. https://doi.org/10.1007/s00402-020-03518-z
Comments (0)