The time-dependent expression of FPR2 and ANXA1 in murine deep vein thrombosis model and its relation to thrombus age

Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398:64–77. https://doi.org/10.1016/S0140-6736(20)32658-1.

Article  CAS  PubMed  Google Scholar 

Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41:3–14. https://doi.org/10.1007/s11239-015-1311-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruskin KJ. Deep vein thrombosis and venous thromboembolism in trauma. Curr Opin Anaesthesiol. 2018;31:215–8. https://doi.org/10.1097/ACO.0000000000000567.

Article  PubMed  Google Scholar 

Fanola CL, Norby FL, Shah AM, Chang PP, Lutsey PL, Rosamond WD, Cushman M, Folsom AR. Incident heart failure and long-term risk for venous thromboembolism. J Am Coll Cardiol. 2020;75:148–58. https://doi.org/10.1016/j.jacc.2019.10.058.

Article  PubMed  PubMed Central  Google Scholar 

Byard RW. Deep venous thrombosis, pulmonary embolism and long-distance flights. Forensic Sci Med Pathol. 2019;15:122–4. https://doi.org/10.1007/s12024-018-9991-9.

Article  CAS  PubMed  Google Scholar 

Cecchi R, Lazzaro A, Catanese M, Mandarelli G, Ferracuti S. Fatal thromboembolism following physical restraint in a patient with schizophrenia. Int J Legal Med. 2012;126:477–82. https://doi.org/10.1007/s00414-012-0670-1.

Article  PubMed  Google Scholar 

Irniger W. Histologische altersbestimmung von thrombosen und embolien. Virchows Arch Pathol Anat. 1963;336:220.

Article  Google Scholar 

Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–8. https://doi.org/10.1016/j.forsciint.2009.01.006.

Article  PubMed  Google Scholar 

Maffeis V, Nicolè L, Rago C, Fassina A. Histological criteria for age determination of fatal venous thromboembolism. Int J Legal Med. 2018;132:775–80. https://doi.org/10.1007/s00414-017-1705-4.

Article  PubMed  Google Scholar 

Bonasoni MP, Muciaccia B, Pelligra CB, Goldoni M, Cecchi R. Third trimester intrauterine fetal death: proposal for the assessment of the chronology of umbilical cord and placental thrombosis. Int J Legal Med. 2022;136:705–11. https://doi.org/10.1007/s00414-022-02784-3.

Article  PubMed  PubMed Central  Google Scholar 

Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med. 2009;123:235–40. https://doi.org/10.1007/s00414-009-0324-0.

Article  PubMed  Google Scholar 

Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int. 2010;195:143–7. https://doi.org/10.1016/j.forsciint.2009.12.008.

Article  CAS  PubMed  Google Scholar 

Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: proposed immune paradigms. Int J Mol Sci. 2020;21:2080. https://doi.org/10.3390/ijms21062080.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203:93–8. https://doi.org/10.1016/j.forsciint.2010.07.004.

Article  CAS  PubMed  Google Scholar 

Nosaka M, Ishida Y, Kimura A, Kondo T. Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med. 2010;124:439–44. https://doi.org/10.1007/s00414-010-0484-y.

Article  PubMed  Google Scholar 

Nosaka M, Ishida Y, Kimura A, Hama M, Kawaguchi T, Yamamoto H, Kuninaka Y, Shimada E, Kondo T. Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med. 2015;129:1021–5. https://doi.org/10.1007/s00414-015-1147-9.

Article  PubMed  Google Scholar 

Prevete N, Liotti F, Marone G, Melillo RM, de Paulis A. Formyl peptide receptors at the interface of inflammation, angiogenesis and tumor growth. Pharmacol Res. 2015;102:184–91. https://doi.org/10.1016/j.phrs.2015.09.017.

Article  CAS  PubMed  Google Scholar 

Lee HY, Lee M, Bae YS. Formyl peptide receptors in cellular differentiation and inflammatory diseases. J Cell Biochem. 2017;118:1300–7. https://doi.org/10.1002/jcb.25877.

Article  CAS  PubMed  Google Scholar 

Weiß E, Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 2018;39:815–29. https://doi.org/10.1016/j.it.2018.08.005.

Article  CAS  PubMed  Google Scholar 

Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol. 2022;179:4617–39. https://doi.org/10.1111/bph.15919.

Article  CAS  PubMed  Google Scholar 

Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, Germain RN. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–5. https://doi.org/10.1038/nature12175.

Article  CAS  PubMed  Google Scholar 

Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Le Y, Gao JL, Zhao J, Wang JM, Wang A. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS One. 2014;9: e90613. https://doi.org/10.1371/journal.pone.0090613.

Article  PubMed  PubMed Central  Google Scholar 

Kwon YW, Heo SC, Jang IH, Jeong GO, Yoon JW, Mun JH, Kim JH. Stimulation of cutaneous wound healing by an FPR2-specific peptide agonist WKYMVm. Wound Repair Regen. 2015;23:575–82. https://doi.org/10.1111/wrr.12315.

Article  PubMed  Google Scholar 

de Arriba MDC, Fernández G, Chacón-Solano E, Mataix M, Martínez-Santamaría L, Illera N, Carrión-Marchante R, Martín ME, Larcher F, González VM, Del Río M, Carretero M. FPR2 DNA aptamers for targeted therapy of wound repair. J Invest Dermatol. 2022;142:2238-48.e8. https://doi.org/10.1016/j.jid.2021.12.026.

Article  CAS  PubMed  Google Scholar 

Cattaneo F, Parisi M, Ammendola R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci. 2013;14:7193–230. https://doi.org/10.3390/ijms14047193.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen. 2020;28:772–9. https://doi.org/10.1111/wrr.12860.

Article  PubMed  Google Scholar 

Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation. 2019;140:319–35. https://doi.org/10.1161/CIRCULATIONAHA.118.039345.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vital SA, Senchenkova EY, Ansari J, Gavins FNE. Targeting AnxA1/Formyl Peptide Receptor 2 Pathway Affords Protection against Pathological Thrombo-Inflammation. Cells. 2020;9:2473. https://doi.org/10.3390/cells9112473.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ansari J, Senchenkova EY, Vital SA, Al-Yafeai Z, Kaur G, Sparkenbaugh EM, Orr AW, Pawlinski R, Hebbel RP, Granger DN, Kubes P, Gavins FNE. Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease. Blood. 2021;137:1538–49. https://doi.org/10.1182/blood.2020009166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE. 2015;10: e0145342. https://doi.org/10.1371/journal.pone.0145342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost. 2020;18:1009–19. https://doi.org/10.1111/jth.14759.

Article  CAS  PubMed  Google Scholar 

Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, Antalis TM. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol. 2019;10:1348. https://doi.org/10.3389/fimmu.2019.01348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG. Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg. 1999;30:894–9. https://doi.org/10.1016/s0741-5214(99)70014-5.

Article  CAS 

Comments (0)

No login
gif