Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021;398:64–77. https://doi.org/10.1016/S0140-6736(20)32658-1.
Article CAS PubMed Google Scholar
Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. J Thromb Thrombolysis. 2016;41:3–14. https://doi.org/10.1007/s11239-015-1311-6.
Article CAS PubMed PubMed Central Google Scholar
Ruskin KJ. Deep vein thrombosis and venous thromboembolism in trauma. Curr Opin Anaesthesiol. 2018;31:215–8. https://doi.org/10.1097/ACO.0000000000000567.
Fanola CL, Norby FL, Shah AM, Chang PP, Lutsey PL, Rosamond WD, Cushman M, Folsom AR. Incident heart failure and long-term risk for venous thromboembolism. J Am Coll Cardiol. 2020;75:148–58. https://doi.org/10.1016/j.jacc.2019.10.058.
Article PubMed PubMed Central Google Scholar
Byard RW. Deep venous thrombosis, pulmonary embolism and long-distance flights. Forensic Sci Med Pathol. 2019;15:122–4. https://doi.org/10.1007/s12024-018-9991-9.
Article CAS PubMed Google Scholar
Cecchi R, Lazzaro A, Catanese M, Mandarelli G, Ferracuti S. Fatal thromboembolism following physical restraint in a patient with schizophrenia. Int J Legal Med. 2012;126:477–82. https://doi.org/10.1007/s00414-012-0670-1.
Irniger W. Histologische altersbestimmung von thrombosen und embolien. Virchows Arch Pathol Anat. 1963;336:220.
Fineschi V, Turillazzi E, Neri M, Pomara C, Riezzo I. Histological age determination of venous thrombosis: a neglected forensic task in fatal pulmonary thrombo-embolism. Forensic Sci Int. 2009;186:22–8. https://doi.org/10.1016/j.forsciint.2009.01.006.
Maffeis V, Nicolè L, Rago C, Fassina A. Histological criteria for age determination of fatal venous thromboembolism. Int J Legal Med. 2018;132:775–80. https://doi.org/10.1007/s00414-017-1705-4.
Bonasoni MP, Muciaccia B, Pelligra CB, Goldoni M, Cecchi R. Third trimester intrauterine fetal death: proposal for the assessment of the chronology of umbilical cord and placental thrombosis. Int J Legal Med. 2022;136:705–11. https://doi.org/10.1007/s00414-022-02784-3.
Article PubMed PubMed Central Google Scholar
Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent appearance of intrathrombus neutrophils and macrophages in a stasis-induced deep vein thrombosis model and its application to thrombus age determination. Int J Legal Med. 2009;123:235–40. https://doi.org/10.1007/s00414-009-0324-0.
Nosaka M, Ishida Y, Kimura A, Kondo T. Time-dependent organic changes of intravenous thrombi in stasis-induced deep vein thrombosis model and its application to thrombus age determination. Forensic Sci Int. 2010;195:143–7. https://doi.org/10.1016/j.forsciint.2009.12.008.
Article CAS PubMed Google Scholar
Nicklas JM, Gordon AE, Henke PK. Resolution of deep venous thrombosis: proposed immune paradigms. Int J Mol Sci. 2020;21:2080. https://doi.org/10.3390/ijms21062080.
Article CAS PubMed PubMed Central Google Scholar
Kondo T, Ishida Y. Molecular pathology of wound healing. Forensic Sci Int. 2010;203:93–8. https://doi.org/10.1016/j.forsciint.2010.07.004.
Article CAS PubMed Google Scholar
Nosaka M, Ishida Y, Kimura A, Kondo T. Immunohistochemical detection of MMP-2 and MMP-9 in a stasis-induced deep vein thrombosis model and its application to thrombus age estimation. Int J Legal Med. 2010;124:439–44. https://doi.org/10.1007/s00414-010-0484-y.
Nosaka M, Ishida Y, Kimura A, Hama M, Kawaguchi T, Yamamoto H, Kuninaka Y, Shimada E, Kondo T. Immunohistochemical detection of intrathrombotic IL-6 and its application to thrombus age estimation. Int J Legal Med. 2015;129:1021–5. https://doi.org/10.1007/s00414-015-1147-9.
Prevete N, Liotti F, Marone G, Melillo RM, de Paulis A. Formyl peptide receptors at the interface of inflammation, angiogenesis and tumor growth. Pharmacol Res. 2015;102:184–91. https://doi.org/10.1016/j.phrs.2015.09.017.
Article CAS PubMed Google Scholar
Lee HY, Lee M, Bae YS. Formyl peptide receptors in cellular differentiation and inflammatory diseases. J Cell Biochem. 2017;118:1300–7. https://doi.org/10.1002/jcb.25877.
Article CAS PubMed Google Scholar
Weiß E, Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 2018;39:815–29. https://doi.org/10.1016/j.it.2018.08.005.
Article CAS PubMed Google Scholar
Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol. 2022;179:4617–39. https://doi.org/10.1111/bph.15919.
Article CAS PubMed Google Scholar
Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, Germain RN. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371–5. https://doi.org/10.1038/nature12175.
Article CAS PubMed Google Scholar
Liu M, Chen K, Yoshimura T, Liu Y, Gong W, Le Y, Gao JL, Zhao J, Wang JM, Wang A. Formylpeptide receptors mediate rapid neutrophil mobilization to accelerate wound healing. PLoS One. 2014;9: e90613. https://doi.org/10.1371/journal.pone.0090613.
Article PubMed PubMed Central Google Scholar
Kwon YW, Heo SC, Jang IH, Jeong GO, Yoon JW, Mun JH, Kim JH. Stimulation of cutaneous wound healing by an FPR2-specific peptide agonist WKYMVm. Wound Repair Regen. 2015;23:575–82. https://doi.org/10.1111/wrr.12315.
de Arriba MDC, Fernández G, Chacón-Solano E, Mataix M, Martínez-Santamaría L, Illera N, Carrión-Marchante R, Martín ME, Larcher F, González VM, Del Río M, Carretero M. FPR2 DNA aptamers for targeted therapy of wound repair. J Invest Dermatol. 2022;142:2238-48.e8. https://doi.org/10.1016/j.jid.2021.12.026.
Article CAS PubMed Google Scholar
Cattaneo F, Parisi M, Ammendola R. Distinct signaling cascades elicited by different formyl peptide receptor 2 (FPR2) agonists. Int J Mol Sci. 2013;14:7193–230. https://doi.org/10.3390/ijms14047193.
Article CAS PubMed PubMed Central Google Scholar
Huang JJ, Xia CJ, Wei Y, Yao Y, Dong MW, Lin KZ, Yu LS, Gao Y, Fan YY. Annexin A1-derived peptide Ac2-26 facilitates wound healing in diabetic mice. Wound Repair Regen. 2020;28:772–9. https://doi.org/10.1111/wrr.12860.
Senchenkova EY, Ansari J, Becker F, Vital SA, Al-Yafeai Z, Sparkenbaugh EM, Pawlinski R, Stokes KY, Carroll JL, Dragoi AM, Qin CX, Ritchie RH, Sun H, Cuellar-Saenz HH, Rubinstein MR, Han YW, Orr AW, Perretti M, Granger DN, Gavins FNE. Novel Role for the AnxA1-Fpr2/ALX Signaling Axis as a Key Regulator of Platelet Function to Promote Resolution of Inflammation. Circulation. 2019;140:319–35. https://doi.org/10.1161/CIRCULATIONAHA.118.039345.
Article CAS PubMed PubMed Central Google Scholar
Vital SA, Senchenkova EY, Ansari J, Gavins FNE. Targeting AnxA1/Formyl Peptide Receptor 2 Pathway Affords Protection against Pathological Thrombo-Inflammation. Cells. 2020;9:2473. https://doi.org/10.3390/cells9112473.
Article CAS PubMed PubMed Central Google Scholar
Ansari J, Senchenkova EY, Vital SA, Al-Yafeai Z, Kaur G, Sparkenbaugh EM, Orr AW, Pawlinski R, Hebbel RP, Granger DN, Kubes P, Gavins FNE. Targeting the AnxA1/Fpr2/ALX pathway regulates neutrophil function, promoting thromboinflammation resolution in sickle cell disease. Blood. 2021;137:1538–49. https://doi.org/10.1182/blood.2020009166.
Article CAS PubMed PubMed Central Google Scholar
Jablonski KA, Amici SA, Webb LM, Ruiz-Rosado Jde D, Popovich PG, Partida-Sanchez S, Guerau-de-Arellano M. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE. 2015;10: e0145342. https://doi.org/10.1371/journal.pone.0145342.
Article CAS PubMed PubMed Central Google Scholar
Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost. 2020;18:1009–19. https://doi.org/10.1111/jth.14759.
Article CAS PubMed Google Scholar
Mukhopadhyay S, Johnson TA, Duru N, Buzza MS, Pawar NR, Sarkar R, Antalis TM. Fibrinolysis and Inflammation in Venous Thrombus Resolution. Front Immunol. 2019;10:1348. https://doi.org/10.3389/fimmu.2019.01348.
Article CAS PubMed PubMed Central Google Scholar
Humphries J, McGuinness CL, Smith A, Waltham M, Poston R, Burnand KG. Monocyte chemotactic protein-1 (MCP-1) accelerates the organization and resolution of venous thrombi. J Vasc Surg. 1999;30:894–9. https://doi.org/10.1016/s0741-5214(99)70014-5.
Comments (0)