FDA. (2014). Immunogenicity assessment for therapeutic protein products.
Walsh G, Walsh E. Biopharmaceutical benchmarks 2022. Nat Biotechnol. 2022;40(12):1722–60. https://doi.org/10.1038/s41587-022-01582-x.
Article PubMed Central CAS PubMed Google Scholar
Reichert JM. Monoclonal antibodies in the clinic. Nat Biotechnol. 2001;19(9):819–22. https://doi.org/10.1038/nbt0901-819.
Article CAS PubMed Google Scholar
Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3–10. https://doi.org/10.1016/j.ymeth.2005.01.001.
Article CAS PubMed Google Scholar
Masson GR, Burke JE, Ahn NG, Anand GS, Borchers C, Brier S, et al. Recommendations for performing, interpreting and reporting hydrogen deuterium exchange mass spectrometry (HDX-MS) experiments. Nat Methods. 2019;16(7):595–602. https://doi.org/10.1038/s41592-019-0459-y.
Article PubMed Central CAS PubMed Google Scholar
Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332(6162):323–7. https://doi.org/10.1038/332323a0.
Article ADS CAS PubMed Google Scholar
Wang Y-MC, Wang J, Hon YY, Zhou L, Fang L, Ahn HY. Evaluating and reporting the immunogenicity impacts for biological products—a clinical pharmacology perspective. APPS J. 2016;18(2):395–403. https://doi.org/10.1208/s12248-015-9857-y.
Krieckaert CLM, Bartelds GM, Lems WF, Wolbink GJ. The effect of immunomodulators on the immunogenicity of TNF-blocking therapeutic monoclonal antibodies: a review. Arthritis Res Ther. 2010;12(5):217. https://doi.org/10.1186/ar3147.
Article PubMed Central CAS PubMed Google Scholar
Atzeni F, Talotta R, Salaffi F, Cassinotti A, Varisco V, Battellino M, et al. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun Rev. 2013;12(7):703–8. https://doi.org/10.1016/j.autrev.2012.10.021.
Article CAS PubMed Google Scholar
Moots RJ, Xavier RM, Mok CC, Rahman MU, Tsai W-C, Al-Maini MH, et al. The impact of anti-drug antibodies on drug concentrations and clinical outcomes in rheumatoid arthritis patients treated with adalimumab, etanercept, or infliximab: Results from a multinational, real-world clinical practice, non-interventional study. PLoS ONE. 2017;12(4): e0175207. https://doi.org/10.1371/journal.pone.0175207.
Article PubMed Central CAS PubMed Google Scholar
Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, Quarmby V, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides—harmonized terminology and tactical recommendations. AAPS J. 2014;16(4):658–73. https://doi.org/10.1208/s12248-014-9599-2.
Article PubMed Central CAS PubMed Google Scholar
Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32. https://doi.org/10.1007/s13238-017-0408-4.
Article MathSciNet CAS PubMed Google Scholar
Korswagen LA, Bartelds GM, Krieckaert CLM, Turkstra F, Nurmohamed MT, van Schaardenburg D, et al. Venous and arterial thromboembolic events in adalimumab-treated patients with antiadalimumab antibodies: a case series and cohort study. Arthritis Rheumat. 2011;63(4):877–83. https://doi.org/10.1002/art.30209.
Article CAS PubMed Google Scholar
Petitpain N, Gambier N, Wahl D, Chary-Valckenaere I, Loeuille D, Gillet P, et al. Arterial and venous thromboembolic events during anti-TNF therapy: a study of 85 spontaneous reports in the period 2000–2006. Biomed Mater Eng. 2009;19(4–5):355–64. https://doi.org/10.3233/bme-2009-0600.
Kearns JD, Wassmann P, Olgac U, Fichter M, Christen B, Rubic-Schneider T, et al. A root cause analysis to identify the mechanistic drivers of immunogenicity against the anti-VEGF biotherapeutic brolucizumab. Sci Transl Med. 2023;15(681):eabq5068. https://doi.org/10.1126/scitranslmed.abq5068.
Article CAS PubMed Google Scholar
Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunother. 2019;11(3):241–54. https://doi.org/10.2217/imt-2018-0081.
Shikh MEME, Sayed RME, Szakal AK, Tew JG. T-independent antibody responses to t-dependent antigens: a novel follicular dendritic cell-dependent activity. J Immunol. 2009;182(6):3482–91. https://doi.org/10.4049/jimmunol.0802317.
Article CAS PubMed Google Scholar
Obukhanych TV, Nussenzweig MC. T-independent type II immune responses generate memory B cells. J Exper Med. 2006;203(2):305–10. https://doi.org/10.1084/jem.20052036.
Vos Q, Lees A, Wu ZQ, Snapper CM, Mond JJ. B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms. Immunol Rev. 2000;176(1):154–70. https://doi.org/10.1034/j.1600-065x.2000.00607.x.
Article CAS PubMed Google Scholar
Fischer SK, Cheu M, Peng K, Lowe J, Araujo J, Murray E, et al. Specific immune response to phospholipase b-like 2 protein, a host cell impurity in lebrikizumab clinical material. AAPS J. 2017;19(1):254–63. https://doi.org/10.1208/s12248-016-9998-7.
Article CAS PubMed Google Scholar
Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;105(2):417–30. https://doi.org/10.1016/j.xphs.2015.11.002.
Article CAS PubMed Google Scholar
Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11(2):99–109. https://doi.org/10.3109/1547691x.2013.821564.
Article CAS PubMed Google Scholar
Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7. https://doi.org/10.1208/aapsj080359.
Article MathSciNet PubMed Central PubMed Google Scholar
Shire SJ. Formulation and manufacturability of biologics. Curr Opin Biotechnol. 2009;20(6):708–14. https://doi.org/10.1016/j.copbio.2009.10.006.
Article CAS PubMed Google Scholar
Chackerian B, Lenz P, Lowy DR, Schiller JT. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol. 2002;169(11):6120–6. https://doi.org/10.4049/jimmunol.169.11.6120.
Article CAS PubMed Google Scholar
Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front Immunol. 2020;11:1951. https://doi.org/10.3389/fimmu.2020.01951.
Article PubMed Central CAS PubMed Google Scholar
Lundahl MLE, Fogli S, Colavita PE, Scanlan EM. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem Biol. 2021;2(4):1004–20. https://doi.org/10.1039/d1cb00067e.
Article PubMed Central CAS PubMed Google Scholar
Seidl A, Hainzl O, Richter M, Fischer R, Böhm S, Deutel B, et al. Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res. 2012;29(6):1454–67. https://doi.org/10.1007/s11095-011-0621-4.
Article CAS PubMed Google Scholar
Moore WV, Leppert P. Role of aggregated human growth hormone (hGH) in development of antibodies to hGH*. J Clin Endocrinol Metab. 1980;51(4):691–7. https://doi.org/10.1210/jcem-51-4-691.
Article CAS PubMed Google Scholar
Hermeling S, Crommelin DJA, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins. Pharm Res. 2004;21(6):897–903. https://doi.org/10.1023/b:pham.0000029275.41323.a6.
Article CAS PubMed Google Scholar
Hu S, D’Argenio DZ. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn. 2020;47(5):385–409. https://doi.org/10.1007/s10928-020-09691-3.
Article PubMed Central CAS PubMed Google Scholar
Doyle HA, Gee RJ, Mamula MJ. Altered immunogenicity of isoaspartate containing proteins. Autoimmunity. 2007;40(2):131–7. https://doi.org/10.1080/08916930601165180.
Article CAS PubMed Google Scholar
Eggleton P, Haigh R, Winyard PG. Consequence of neo-antigenicity of the ‘altered self.’ Rheumatol. 2008;47(5):567–71. https://doi.org/10.1093/rheumatology/ken014.
Comments (0)