Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
Article PubMed PubMed Central Google Scholar
Fernandez Rico C, Konate K, Josse E, Nargeot J, Barrère-Lemaire S, Boisguérin P. Therapeutic peptides to treat myocardial ischemia-reperfusion injury. Front Cardiovasc Med. 2022;9:1–20. https://doi.org/10.3389/fcvm.2022.792885
Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138(20):e618-51. https://doi.org/10.1161/CIR.0000000000000617
Parks DA, Granger DN. Contributions of ischemia and reperfusion to mucosal lesion formation. Am J Physiol. 1986;250(6):G749-53. https://doi.org/10.1152/ajpgi.1986.250.6.G749
Article CAS PubMed Google Scholar
Hashmi S, Al-Salam S. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison. Int J Clin E Pathol. 2015;8(8):8786–96.
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100. https://doi.org/10.1172/JCI62874
Article CAS PubMed PubMed Central Google Scholar
Heusch G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol. 2020;17(12):773–89. https://doi.org/10.1038/s41569-020-0403-y
Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454–71. https://doi.org/10.1016/j.jacc.2015.02.032
Rout A, Tantry US, Novakovic M, Sukhi A, Gurbel PA. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother. 2020;21(15):1851–65. https://doi.org/10.1080/14656566.2020.1787987
Article CAS PubMed Google Scholar
Kumar K, Singh N, Jaggi AS, Maslov L. Clinical applicability of conditioning techniques in ischemia-reperfusion injury: a review of the literature. Curr Cardiol Rev. 2021;17(3):306–18. https://doi.org/10.2174/1573403X16999200817170619
Article PubMed PubMed Central Google Scholar
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36. https://doi.org/10.1161/01.CIR.74.5.1124
Article CAS PubMed Google Scholar
Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285(2):H579-88. https://doi.org/10.1152/ajpheart.01064.2002
Article CAS PubMed Google Scholar
Kaur K, Singh N, Dhawan RK. Potential role of EphrinA2 receptors in postconditioning induced cardioprotection in rats. Eur J Pharmacol. 2020;883:1–58. https://doi.org/10.1016/j.ejphar.2020.173231
Zhang J, Zhang X. Ischaemic preconditioning-induced serum exosomes protect against myocardial ischaemia/reperfusion injury in rats by activating the PI3K/AKT signalling pathway. Cell Biochemical Funct. 2021;39(2):287–95. https://doi.org/10.1002/cbf.3578
Li G, Chen S, Lu E, Li Y. Ischemic preconditioning improves preservation with cold blood cardioplegia in valve replacement patients. Eur J Cardiothorac Surg. 1999;15(5):653–7. https://doi.org/10.1016/S1010-7940(99)00070-6
Article CAS PubMed Google Scholar
Madsen JM, Glinge C, Jabbari R, et al. Comparison of effect of ischemic postconditioning on cardiovascular mortality in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention with versus without thrombectomy. Am J Cardiol. 2022;166:18–24. https://doi.org/10.1016/j.amjcard.2021.11.014
Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P. Regional ischemic’preconditioning’protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation. 1993;87(3):893–9. https://doi.org/10.1161/01.CIR.87.3.893
Article CAS PubMed Google Scholar
Wu Q, Gui P, Wu J, et al. Effect of limb ischemic preconditioning on myocardial injury in patients undergoing mitral valve replacement surgery–a randomized controlled trial. Circ J. 2011;75(8):1885–9. https://doi.org/10.1253/circj.CJ-10-1130
Candilio L, Malik A, Ariti C, et al. Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart. 2015;101(3):185–92. https://doi.org/10.1136/heartjnl-2014-306178
Drury NE, van Doorn C, Woolley RL, et al. The Bilateral Remote Ischaemic Conditioning in Children (BRICC) trial: a two-centre, double-blind, randomised controlled trial in young children undergoing cardiac surgery. medRxiv. 2023:1-34. https://doi.org/10.1101/2023.04.21.23288646
Davidson SM, Selvaraj P, He D, et al. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic Res Cardiol. 2013;108:1. https://doi.org/10.1007/s00395-013-0377-6
Wang X, Wang J, Tu T, et al. Remote ischemic postconditioning protects against myocardial ischemia-reperfusion injury by inhibition of the RAGE-HMGB1 pathway. Biomed Res Int. 2018;2018:1–10. https://doi.org/10.1155/2018/4565630
Sawashita Y, Hirata N, Yoshikawa Y, Terada H, Tokinaga Y, Yamakage M. Remote ischemic preconditioning reduces myocardial ischemia–reperfusion injury through unacylated ghrelin-induced activation of the JAK/STAT pathway. Basic Res Cardiol. 2020;115:1–2. https://doi.org/10.1007/s00395-020-0809-z
Rohailla S, Clarizia N, Sourour M, et al. Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One. 2014;9(10):111291. https://doi.org/10.1371/journal.pone.0111291
Deepika Maurya PK. Health benefits of quercetin in age-related diseases. Molecules. 2022;27(8):1–4. https://doi.org/10.3390/molecules27082498
Zhang YM, Zhang ZY, Wang RX. Protective mechanisms of quercetin against myocardial ischemia reperfusion injury. Front Physiol. 2020;11(956):1–12. https://doi.org/10.3389/fphys.2020.00956
Yang R, Shen YJ, Chen M, et al. Quercetin attenuates ischemia reperfusion injury by protecting the blood-brain barrier through Sirt1 in MCAO rats. J Asian Nat Prod Res. 2022;24(3):278–89. https://doi.org/10.1080/10286020.2021.1949302
Article CAS PubMed Google Scholar
Canuto JA, Sampaio TL, Silva ME, et al. Protective effect of quercetin on renal tubular cells and the involvement with the renin-angiotensin-aldosterone axis. Braz Arch Biol Technol. 2022;5(64):1–18. https://doi.org/10.1590/1678-4324-2021210202.
Atef Y, El-Fayoumi HM, Abdel-Mottaleb Y, Mahmoud MF. Quercetin and tin protoporphyrin attenuate hepatic ischemia reperfusion injury: role of HO-1. Naunyn-Schmiedebergs Arch Pharmacol. 2017;390(9):871–81. https://doi.org/10.1007/s00210-017-1389-9.
Article CAS PubMed Google Scholar
Curgali K, Toth S, Jonecova Z, et al. Quercetin protects jejunal mucosa from experimental intestinal ischemia reperfusion injury by activation of CD68 positive cells. Acta Histochemica. 2018;120(1):28–32. https://doi.org/10.1016/j.acthis.2017.11.001.
Article CAS PubMed Google Scholar
Liu Y, Song Y, Li S, Mo L. Cardioprotective effect of quercetin against ischemia/reperfusion injury is mediated through NO system and mitochondrial K-ATP channels. Cell J. 2021;23(2):184–90. https://doi.org/10.22074/cellj.2021.7183
Comments (0)