Circular RNA ACVR2A promotes the progression of hepatocellular carcinoma through mir-511-5p targeting PI3K-Akt signaling pathway

Xing M, Wang X, Kiken RA, He L, Zhang J-Y. Immunodiagnostic biomarkers for Hepatocellular Carcinoma (HCC): the first step in detection and treatment. Int J Mol Sci 2021; 22.

Bond MJG, Bolhuis K, Loosveld OJL, de Groot JWB, Droogendijk H, Helgason HH, et al. First-line systemic treatment strategies in patients with initially unresectable colorectal cancer liver metastases (CAIRO5): an open-label, multicentre, randomised, controlled, phase 3 study from the Dutch Colorectal Cancer Group. Lancet Oncol. 2023;24:757–71.

Article  CAS  PubMed  Google Scholar 

Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22:1706–28.

Article  CAS  PubMed  Google Scholar 

Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB. Identifying and characterizing circRNA-Protein Interaction. Theranostics. 2017;7:4183–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci U S A. 1976;73:3852–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaitseva GN, Kolesnikov AA, Shirshov AT. The genetic system of kinetoplasts in trypanosomatides. Mol Cell Biochem. 1977;14:47–54.

Article  CAS  PubMed  Google Scholar 

Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res. 2020;98:87–97.

Article  CAS  PubMed  Google Scholar 

Shi Y, Jia X, Xu J. The new function of circRNA: translation. Clin Transl Oncol. 2020;22:2162–9.

Article  CAS  PubMed  Google Scholar 

Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77:1661–80.

Article  CAS  PubMed  Google Scholar 

Chen C-K, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L et al. Structured elements drive extensive circular RNA translation. Mol Cell 2021; 81.

Stagsted LVW, O’Leary ET, Ebbesen KK, Hansen TB. The RNA-binding protein SFPQ preserves long-intron splicing and regulates circRNA biogenesis in mammals. Elife 2021; 10.

Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X, et al. CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol. 2022;922:174915.

Article  CAS  PubMed  Google Scholar 

Zhang J, Liu Y, Shi G. The circRNA-miRNA-mRNA regulatory network in systemic lupus erythematosus. Clin Rheumatol. 2021;40:331–9.

Article  PubMed  Google Scholar 

Xue C, Li G, Zheng Q, Gu X, Bao Z, Lu J, et al. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer. 2022;21:108.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kristensen LS, Jakobsen T, Hager H, Kjems J. The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol. 2022;19:188–206.

Article  CAS  PubMed  Google Scholar 

Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C et al. CircRNA: a novel potential strategy to treat thyroid cancer (review). Int J Mol Med 2021; 48.

Zhang H, Shen Y, Li Z, Ruan Y, Li T, Xiao B, et al. The biogenesis and biological functions of circular RNAs and their molecular diagnostic values in cancers. J Clin Lab Anal. 2020;34:e23049.

Article  PubMed  Google Scholar 

Su K, Yi Q, Dai X, Liu O. Circular RNA ITCH: an Emerging Multifunctional Regulator. Biomolecules 2022; 12.

Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech 2021; 14.

Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr Opin Immunol. 2020;65:14–20.

Article  CAS  PubMed  Google Scholar 

Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M, Calin GA. Going circular: history, present, and future of circRNAs in cancer. Oncogene. 2023;42:2783–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

Article  CAS  PubMed  Google Scholar 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu K, Yin N, Peng M, Stamatiades EG, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu K, Yin N, Peng M, Stamatiades EG, Chhangawala S, Shyu A et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 2021; 54.

Pan T, Sun S, Chen Y, Tian R, Chen E, Tan R, et al. Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis. Crit Care. 2022;26:29.

Article  PubMed  Google Scholar 

Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, et al. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: promises and challenges. Pharmacol Res. 2023;187:106553.

Article  CAS  PubMed  Google Scholar 

Sun Y, Zhang H, Meng J, Guo F, Ren D, Wu H, et al. S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway. Cell Rep. 2022;40:111194.

Article  CAS  PubMed  Google Scholar 

Abdel-Megeed RM, Abd El-Alim SH, Arafa AF, Matloub AA, Farrag AERH, Darwish AB, et al. Crosslink among phosphatidylinositol-3 kinase/Akt, PTEN and STAT-5A signaling pathways post liposomal galactomannan hepatocellular carcinoma therapy. Toxicol Rep. 2020;7:1531–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi H, Fang R, Li Y, Li L, Zhang W, Wang H, et al. The oncoprotein HBXIP suppresses gluconeogenesis through modulating PCK1 to enhance the growth of hepatoma cells. Cancer Lett. 2016;382:147–56.

Article  CAS  PubMed  Google Scholar 

Lu M, Hartmann D, Braren R, Gupta A, Wang B, Wang Y, et al. Oncogenic Akt-FOXO3 loop favors tumor-promoting modes and enhances oxidative damage-associated hepatocellular carcinogenesis. BMC Cancer. 2019;19:887.

Article  PubMed  PubMed Central  Google Scholar 

Song R, Ma S, Xu J, Ren X, Guo P, Liu H, et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 2023;22:16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Hu Z-Q, Yu S-Y, Mao L, Zhou Z-J, Wang P-C, et al. CircRPN2 inhibits aerobic glycolysis and metastasis in Hepatocellular Carcinoma. Cancer Res. 2022;82:1055–69.

Article  CAS  PubMed  Google Scholar 

Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12:90.

Article  PubMed  PubMed Central  Google Scholar 

Zhang F, Jiang J, Qian H, Yan Y, Xu W. Exosomal circRNA: emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 2023;16:67.

Comments (0)

No login
gif