K.C. Mathai, S. Vidya, A. John, S. Solomon, and J.K. Thomas, Structural, optical, and compactness characteristics of nanocrystalline CaNb2O6 synthesized through an autoigniting combustion method. Adv. Condens. Matter Phys. 2014, 1–6 (2014). https://doi.org/10.1155/2014/735878.
P. Ganguly and A.K. Jha, Structural and electrical properties of Ba5−xCaxSmTi3Nb7O30 (x=0–5) ferroelectric ceramics. J. Alloy. Compd. 495, 7–12 (2010). https://doi.org/10.1016/j.jallcom.2010.01.118.
X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, and I.M. Reaney, A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem. Mater. 27, 3250–3261 (2015). https://doi.org/10.1021/acs.chemmater.5b00072.
A. Rotaru and F.D. Morrison, Vogel-Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: Ba6MNb9O30 (M = Ga, Sc, In). J. Therm. Anal. Calorim.Calorim. 120, 1249–1259 (2015). https://doi.org/10.1007/s10973-014-4355-5.
X.L. Zhu, K. Li, and X.M. Chen, Ferroelectric transition and low-temperature dielectric relaxations in filled tungsten bronzes. J. Am. Ceram. Soc. 97, 329–338 (2014). https://doi.org/10.1111/jace.12790.
X.L. Zhu, S.Y. Wu, and X.M. Chen, Dielectric anomalies in (BaxSr1−x)4Nd2Ti4Nb6O30 ceramics with various radius differences between A1- and A2-site ions. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2800789.
M.C. Stennett, I.M. Reaney, G.C. Miles, D.I. Woodward, A.R. West, C.A. Kirk, and I. Levin, Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2205720.
P. Ganguly and A.K. Jha, Investigations of structural, dielectric and electrical behaviour of calcium substituted Ba5NdTi3Nb7O30 ferroelectric ceramics. Integr. Ferroelectr.. Ferroelectr. 115, 149–156 (2010). https://doi.org/10.1080/10584587.2010.488566.
X.L. Zhu, X.Q. Liu, and X.M. Chen, Crystal structure and dielectric properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) tungsten bronze ceramics. J. Am. Ceram. Soc. 94, 1829–1836 (2011). https://doi.org/10.1111/j.1551-2916.2010.04327.x.
X. Li Zhu, Y. Bai, X.Q. Liu, and X. Ming Chen, Ferroelectric phase transition and low-temperature dielectric relaxations in Sr4(La1−xSmx)2Ti4Nb6O30 ceramics. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3664857.
K. Li, X.L. Zhu, X.Q. Liu, and X.M. Chen, Effects of Ca-substitution on structural, dielectric, and ferroelectric properties of Ba5SmTi3Nb7O30 tungsten bronze ceramics. Appl. Phys. Lett. 101, 042906 (2012). https://doi.org/10.1063/1.4739841.
R.N.P. Choudhary, S.R. Shannigrahi, and A.K. Singh, Ferroelectric phase transition in Ba5RTi3Nb7O30 [R=Nd, Eu, Gd] ceramics. Bull. Mater. Sci. 22, 975–979 (1999). https://doi.org/10.1007/bf02745689.
P.P. Rao, S.K. Ghosh, and P. Koshy, Dielectric and ferroelectric properties of Ba3M3Ti5Nb5O30 (M= Sm or Y) ceramics. J. Mater. Sci.: Mater. Electr. 12, 729–732 (2001). https://doi.org/10.1023/A:1012944927315.
S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, and H.N. Acharya, Phase transition in Ba5RTi3Nb7O30 (R = Dy, Sm) ferroelectric ceramics. J. Phys. Chem. Solids 59, 737–742 (1998). https://doi.org/10.1016/s0022-3697(97)00217-5.
X.H. Zheng and X.M. Chen, Dielectric ceramics with tungsten-bronze structure in the BaO–Nd2O3–TiO2–Nb2O5 system. J. Mater. Res. 17, 1664–1670 (2002). https://doi.org/10.1557/jmr.2002.0245.
P.R. Das, R.N.P. Choudhary, and B.K. Samantray, Diffuse ferroelectric phase transition in Na2PbSm2W2Ti4Nb4O30 ceramics. Mater. Chem. Phys. 101, 228–233 (2007). https://doi.org/10.1016/j.matchemphys.2006.04.005.
B. Behera, P. Nayak, and R.N.P. Choudhary, Structural, dielectric and electrical properties of NaBa2X5O15 (X=Nb and Ta) ceramics. Mater. Lett. 59, 3489–3493 (2005). https://doi.org/10.1016/j.matlet.2005.06.019.
J. Yeon, P.S. Halasyamani, and I.V. Kityk, Nonlinear optical effects in nano-sized ferroelectrics Sr6Ti2Nb(Ta)8O30. Mater. Lett. 62, 1082–1084 (2008). https://doi.org/10.1016/j.matlet.2007.07.048.
V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Galinetto, and G. Chiodelli, Structural and spectroscopic properties of pure and doped Ba6Ti2Nb8O30 tungsten bronze. J. Phys. Chem. B 110, 17798–17805 (2006). https://doi.org/10.1021/jp063382p.
Article CAS PubMed Google Scholar
X.H. Zheng and X.M. Chen, Crystal structure and dielectric properties of ferroelectric ceramics in the BaO-Sm2O3-TiO2-Nb2O5 system. Solid State Commun.Commun. 125, 449–454 (2003). https://doi.org/10.1016/s0038-1098(02)00709-3.
L. Fang, H. Zhang, J.B. Yan, and W.M. Yang, Synthesis and dielectric properties of a new niobate Ba5NdTi3Nb7O30. Chin. J. Inorg. Chem. 18(11), 1131–1134 (2002).
A. Bendahhou, P. Marchet, A. El-Houssaine, S. El Barkany, and M. Abou-Salama, Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm 23, 163–173 (2021). https://doi.org/10.1039/d0ce01561j.
A. Bendahhou, P. Marchet, S. El Barkany, and M. Abou-salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J. Alloy. Compd. 882, 160716 (2021). https://doi.org/10.1016/j.jallcom.2021.160716.
S. Jindal, A. Vasishth, S. Devi, N. Aggarwal, and K.K. Kushwah, Investigation of structural, ferroelectric and magnetic properties of iron doped tungsten bronze multiferroic ceramics. Physica B B 595, 412341 (2020). https://doi.org/10.1016/j.physb.2020.412341.
S. Jindal, A. Vashishth, S. Devi, and K. Kumar Kushwah, Prospective features of multiferroic tungsten bronze ceramics and its futuristic applications. Mater. Today: Proc. 51, 1252–1258 (2022). https://doi.org/10.1016/j.matpr.2021.07.351.
S. Jindal, N. Aggarwal, A. Vasishth, and A. Sharma, Investigation of tungsten bronze ferroelectric ceramic by conventional and mechanical activation processes. Mater. Today: Proc. 68, 886–890 (2022). https://doi.org/10.1016/j.matpr.2022.06.424.
S. Jindal, S. Devi, A. Vasishth, K.M. Batoo, and G. Kumar, Interdependence between electrical and magnetic properties of polycrystalline cobalt-substituted tungsten bronze multiferroic ceramics. J. Adv. Dielectr.Dielectr. 08, 1850002 (2018). https://doi.org/10.1142/s2010135x18500029.
P. Sahoo, A. Panigrahi, S. Patri, and R. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics. Open Phys. (2008). https://doi.org/10.2478/s11534-008-0112-3.
A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkany, and M. Abou-Salama, Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30ferroelectric ceramic. RSC Adv. 10, 28007–28018 (2020). https://doi.org/10.1039/d0ra05163b.
Article CAS PubMed PubMed Central Google Scholar
J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, and K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017). https://doi.org/10.1016/j.materresbull.2017.04.013.
Y.J. Wong, J. Hassan, and M. Hashim, Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. J. Alloy. Compd. 571, 138–144 (2013). https://doi.org/10.1016/j.jallcom.2013.03.123.
P. Kamkum, N. Atiwongsangthong, R. Muanghlua, and N. Vittayakorn, Application of chicken eggshell waste as a starting material for synthesizing calcium niobate (Ca4Nb2O9) powder. Ceram. Int. 41, S69–S75 (2015).
Comments (0)