Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio)

Amador MHB, McDonald MD (2018) Molecular and functional characterization of the Gulf toadfish serotonin transporter (SERT; SLC6A4). J Exp Biol. https://doi.org/10.1242/jeb.170928

Article  PubMed  Google Scholar 

Andersen J, Taboureau O, Hansen KB et al (2009) Location of the antidepressant binding site in the serotonin transporter. J Biol Chem 284:10276–10284. https://doi.org/10.1074/jbc.M806907200

Article  PubMed  PubMed Central  CAS  Google Scholar 

Audero E, Mlinar B, Baccini G et al (2013) Suppression of serotonin neuron firing increases aggression in mice. J Neurosci 33:8678–8688. https://doi.org/10.1523/JNEUROSCI.2067-12.2013

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bacqué-Cazenave J, Bharatiya R, Barrière G et al (2020) Serotonin in animal cognition and behavior. Int J Mol Sci 21:1649. https://doi.org/10.3390/ijms21051649

Article  PubMed  PubMed Central  CAS  Google Scholar 

Barbosa HP, Lima-Maximino MG, Maximino C (2019) Acute fluoxetine differently affects aggressive display in zebrafish phenotypes. Aggress Behav 45:62–69. https://doi.org/10.1002/ab.21797

Article  PubMed  Google Scholar 

Bellipanni G, Rink E, Bally-Cuif L (2002) Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. Mech Dev 119:S215–S220. https://doi.org/10.1016/S0925-4773(03)00119-9

Article  PubMed  Google Scholar 

Bengel D, Murphy DL, Andrews AM et al (1998) Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53:649–655. https://doi.org/10.1124/mol.53.4.649

Article  PubMed  CAS  Google Scholar 

Bosco A, Bureau C, Affaticati P et al (2013) Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS-domain transcription factor Etv5b. Development 140:372–384. https://doi.org/10.1242/dev.089094

Article  PubMed  CAS  Google Scholar 

Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532:334–339. https://doi.org/10.1038/nature17629

Article  PubMed  PubMed Central  CAS  Google Scholar 

Colman JR, Baldwin D, Johnson LL, Scholz NL (2009) Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquat Toxicol 91:346–354. https://doi.org/10.1016/j.aquatox.2008.12.001

Article  PubMed  CAS  Google Scholar 

Cunha V, Rodrigues P, Santos MM et al (2016) Danio rerio embryos on Prozac—effects on the detoxification mechanism and embryo development. Aquat Toxicol 178:182–189. https://doi.org/10.1016/j.aquatox.2016.08.003

Article  PubMed  CAS  Google Scholar 

Cunha V, Rodrigues P, Santos MM et al (2018) Fluoxetine modulates the transcription of genes involved in serotonin, dopamine and adrenergic signalling in zebrafish embryos. Chemosphere 191:954–961. https://doi.org/10.1016/j.chemosphere.2017.10.100

Article  PubMed  CAS  Google Scholar 

Diss G, Ascencio D, DeLuna A, Landry CR (2014) Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J Exp Zool B 322:488–499. https://doi.org/10.1002/jez.b.22555

Article  Google Scholar 

Edwards DH, Kravitz EA (1997) Serotonin, social status and aggression. Curr Opin Neurobiol 7:812–819. https://doi.org/10.1016/S0959-4388(97)80140-7

Article  PubMed  CAS  Google Scholar 

Egan RJ, Bergner CL, Hart PC et al (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44. https://doi.org/10.1016/j.bbr.2009.06.022

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferreira CSS, Soares SC, Kille P, Oliveira M (2023) Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. Chemosphere 335:139124. https://doi.org/10.1016/j.chemosphere.2023.139124

Article  PubMed  PubMed Central  CAS  Google Scholar 

Filby AL, Paull GC, Hickmore TF, Tyler CR (2010) Unravelling the neurophysiological basis of aggression in a fish model. BMC Genom 11:498. https://doi.org/10.1186/1471-2164-11-498

Article  CAS  Google Scholar 

Filby AL, Paull GC, Searle F et al (2012) Environmental estrogen-induced alterations of male aggression and dominance hierarchies in fish: a mechanistic analysis. Environ Sci Technol 46:3472–3479. https://doi.org/10.1021/es204023d

Article  PubMed  CAS  Google Scholar 

Fontana BD, Alnassar N, Parker MO (2022) The zebrafish (Danio rerio) anxiety test battery: comparison of behavioral responses in the novel tank diving and light–dark tasks following exposure to anxiogenic and anxiolytic compounds. Psychopharmacology 239:287–296. https://doi.org/10.1007/s00213-021-05990-w

Article  PubMed  CAS  Google Scholar 

Frazer A, Hensler J (1999) Basic neurochemistry: molecular, cellular and medical aspects. In: Siegel G, Agranoff B, Albers R (eds) 6th edn. Lippincott-Raven, Philadelphia

Greene SM, Szalda-Petree AD (2022) Fins of fury or fainéant: fluoxetine impacts the aggressive behavior of fighting fish (Betta splendens). Behav Process 194:104544. https://doi.org/10.1016/j.beproc.2021.104544

Article  Google Scholar 

Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213. https://doi.org/10.1016/j.bbr.2008.03.020

Article  PubMed  CAS  Google Scholar 

Holmes A, Murphy D, Crawley J (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161:160–167. https://doi.org/10.1007/s00213-002-1024-3

Article  PubMed  CAS  Google Scholar 

Holmes A, Murphy DL, Crawley JN (2003) Abnormal behavioral phenotypes of serotonin transporter knockout mice: parallels with human anxiety and depression. Biol Psychiatry 54:953–959. https://doi.org/10.1016/j.biopsych.2003.09.003

Article  PubMed  CAS  Google Scholar 

Homberg JR, Pattij T, Janssen MCW et al (2007) Serotonin transporter deficiency in rats improves inhibitory control but not behavioural flexibility. Eur J Neurosci 26:2066–2073. https://doi.org/10.1111/j.1460-9568.2007.05839.x

Article  PubMed  Google Scholar 

Horzmann K, Freeman J (2016) Zebrafish get connected: Investigating neurotransmission targets and alterations in chemical toxicity. Toxics 4:19. https://doi.org/10.3390/toxics4030019

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hubená P, Horký P, Grabic R et al (2021) Prescribed aggression of fishes: pharmaceuticals modify aggression in environmentally relevant concentrations. Ecotoxicol Environ Saf 227:112944. https://doi.org/10.1016/j.ecoenv.2021.112944

Article  PubMed  CAS  Google Scholar 

Jonz MG, Nurse CA (2003) Neuroepithelial cells and associated innervation of the zebrafish gill: a confocal immunofluorescence study. J Comp Neurol 461:1–17. https://doi.org/10.1002/cne.10680

Article  PubMed  Google Scholar 

Jonz MG, Nurse CA (2005) Development of oxygen sensing in the gills of zebrafish. J Exp Biol 208:1537–1549. https://doi.org/10.1242/jeb.01564

Article  PubMed  Google Scholar 

Karousis ED, Mühlemann O (2019) Nonsense-mediated mRNA decay begins where translation ends. Cold Spring Harb Perspect Biol 11:a032862. https://doi.org/10.1101/cshperspect.a032862

Comments (0)

No login
gif