Digital health and wearable devices for retinal disease monitoring

Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB (2019) Digital health: a path to validation. npj Digit Med 2(1):38. https://doi.org/10.1038/s41746-019-0111-3

Article  PubMed  PubMed Central  Google Scholar 

Bargh M (2019) Digital health software and sensors: internet of things-based healthcare services, wearable medical devices, and real-time data analytics. Am J Med Res 6(2):61–66

Article  Google Scholar 

Anderson RS, Roark M, Gilbert R, Sumodhee D (2024) Expert CONsensus on Visual Evaluation in Retinal disease manaGEment: the CONVERGE study. Br J Ophthalmol. https://doi.org/10.1136/bjo-2024-325310

Article  PubMed  Google Scholar 

Elmisery AM, Rho S, Aborizka M (2019) A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services. Cluster Comput 22:1611–1638

Article  Google Scholar 

Gia TN, Dhaou IB, Ali M et al (2019) Energy efficient fog-assisted IoT system for monitoring diabetic patients with cardiovascular disease. Futur Gener Comput Syst. 93:198–211

Article  Google Scholar 

Özdemir V (2019) The big picture on the “AI Turn” for digital health: The Internet of things and cyber-physical systems. Omi A J Integr Biol 23(6):308–311. https://doi.org/10.1089/omi.2019.0069

Article  CAS  Google Scholar 

Honan G, Page A, Kocabas O, Soyata T, Kantarci B (2016) Internet-of-everything oriented implementation of secure Digital Health (D-Health) systems. In: 2016 IEEE Symposium on Computers and Communication (ISCC). 718–725. https://doi.org/10.1109/ISCC.2016.7543821

Kamga P, Mostafa R, Zafar S (2022) The use of wearable ECG devices in the clinical setting: A review. Curr Emerg Hosp Med Rep 10(3):67–72

Article  PubMed  PubMed Central  Google Scholar 

Tasoglu S (2022) Toilet-based continuous health monitoring using urine. Nat Rev Urol 19(4):219–230. https://doi.org/10.1038/s41585-021-00558-x

Article  PubMed  Google Scholar 

South J, Roberts P, Gao T, Black J, Collins A (2021) Development of a spectacle wear monitor system: SpecsOn monitor. Transl Vis Sci Technol 10(12):11. https://doi.org/10.1167/tvst.10.12.11

Article  PubMed  PubMed Central  Google Scholar 

Zafar H, Channa A, Jeoti V, Stojanović GM (2022) Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 22(2). https://doi.org/10.3390/s22020638

Tseng RMWW, Tham YC, Rim TH, Cheng CY (2021) Emergence of non-artificial intelligence digital health innovations in ophthalmology: A systematic review. Clin Exp Ophthalmol 49(7):741–756. https://doi.org/10.1111/ceo.13971

Article  PubMed  Google Scholar 

Venkatesh A, Ramulu P (2022) Application of mobile and wearable technology in data collection for ophthalmology. Ophthalmic Epidemiol 14–22

Keenan TDL, Loewenstein A (2023) Artificial intelligence for home monitoring devices. Curr Opin Ophthalmol 34(5):441–448

Article  PubMed  Google Scholar 

Korot E, Pontikos N, Drawnel FM, Jaber A, Fu DJ, Zhang G, Miranda MA, Liefers B, Glinton S, Wagner SK, Struyven R, Kilduff C, Moshfeghi DM, Keane PA, Sim DA, Thomas PBM, Balaskas K (2022) Enablers and barriers to deployment of smartphone-based home vision monitoring in clinical practice settings. JAMA Ophthalmol 140(2):153–160. https://doi.org/10.1001/jamaophthalmol

Article  PubMed  Google Scholar 

Bastawrous A, Rono HK, Livingstone IAT et al (2015) Development and validation of a smartphone-based visual acuity test (Peek Acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol 133(8):930–937. https://doi.org/10.1001/jamaophthalmol.2015.1468

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pur DR, Lee-Wing N, Bona MD (2023) The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefe’s Arch Clin Exp Ophthalmol 261(6):1743–1755. https://doi.org/10.1007/s00417-022-05972-4

Article  Google Scholar 

Daich Varela M, Sen S, De Guimaraes TAC et al (2023) Artificial intelligence in retinal disease: clinical application, challenges, and future directions. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 261(11):3283–3297. https://doi.org/10.1007/s00417-023-06052-x

Article  Google Scholar 

Woof W, de Guimarães TAC, Al-Khuzaei S, Varela MD, Sen S, Bagga P, Mendes B, Shah M, Burke P, Parry D, Lin S, Naik G, Ghoshal B, Liefers B, Fu DJ, Georgiou M, Nguyen Q, da Silva AS, Liu Y, Fujinami-Yokokawa Y, Kabiri N, Sumodhee D, Patel P, Furman J, Moghul I, Sallum J, De Silva SR, Lorenz B, Holz F, Fujinami K, Webster AR, Mahroo O, Downes SM, Madhusuhan S, Balaskas K, Michaelides M, Pontikos N (2024) Quantification of fundus autofluorescence features in a molecularly characterized cohort of more than 3000 inherited retinal disease patients from the United Kingdom. medRxiv [Preprint]. 2024.03.24.24304809. https://doi.org/10.1101/2024.03.24.24304809

Seneviratne S, Hu Y, Nguyen T et al (2017) A survey of wearable devices and challenges. IEEE Commun Surv Tutorials 19(4):2573–2620

Article  Google Scholar 

Jin CY (2019) A review of AI technologies for wearable devices. IOP Conf Ser Mater Sci Eng 688(4):44072. https://doi.org/10.1088/1757-899X/688/4/044072

Article  Google Scholar 

Weinfurt KP (2022) Constructing and evaluating a validity argument for a performance outcome measure for clinical trials: An example using the multi-luminance mobility test. Clin Trials 19(2):184–193. https://doi.org/10.1177/17407745211073609

Article  PubMed  Google Scholar 

Gilbert RM, Sumodhee D, Pontikos N, Hollyhead C, Patrick A, Scarles S, Van Der Smissen S, Young RM, Nettleton N, Webster AR, Cammack J (2022) Collaborative research and development of a novel, patient-centered digital platform (MyEyeSite) for rare inherited retinal disease data: acceptability and feasibility study. JMIR Form Res. 6(1):e21341. https://doi.org/10.2196/21341

Fasano A, Mancini M (2020) Wearable-based mobility monitoring: the long road ahead. Lancet Neurol 19(5):378–379. https://doi.org/10.1016/S1474-4422(20)30033-8

Article  PubMed  Google Scholar 

Yadav R, Pradeepa P, Srinivasan S, Rajora CS, Rajalakshmi R (2024) A novel healthcare framework for ambient assisted living using the internet of medical things (IOMT) and deep neural network. Meas Sensors. Published online: 101111. https://doi.org/10.1016/j.measen.2024.101111

Wen L, Cheng Q, Lan W et al (2019) An objective comparison of light intensity and near-visual tasks between rural and urban school children in China by a wearable device clouclip. Transl Vis Sci Technol 8(6):15. https://doi.org/10.1167/tvst.8.6.15

Article  PubMed  PubMed Central  Google Scholar 

Pajic B, Zakharov P, Pajic-Eggspuehler B, Cvejic Z (2020) User Friendliness of a Wearable Visual Behavior Monitor for Cataract and Refractive Surgery. Appl Sci 10(6). https://doi.org/10.3390/app10062190

Trzepacz M, Łagodziński P, Grzegorzek M (2019) Electrooculography application in vision therapy using smart glasses BT - Information Technology in Biomedicine. In: Pietka E, Badura P, Kawa J, Wieclawek W, eds. Springer International Publishing; 103–116

Figueiro MG, Hamner R, Bierman A, Rea MS (2012) Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol 45(4):421–434. https://doi.org/10.1177/1477153512450453

Article  PubMed Central  Google Scholar 

Martire T, Nazemzadeh P, Cristiano A, Sanna A, Trojaniello D (2018) Digital Screen Detection Using a Head-mounted Color Light Sensor. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 1–5. https://doi.org/10.1109/MeMeA.2018.8438717

Min C, Lee E, Park S, Kang S (2019) Tiger: Wearable glasses for the 20–20–20 rule to alleviate computer vision syndrome. In: Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services. 1–11

Sayed AM, Shousha MA, Baharul Islam MD et al (2020) Mobility improvement of patients with peripheral visual field losses using novel see-through digital spectacles. PLoS ONE 15(10):e0240509. https://doi.org/10.1371/journal.pone.0240509

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ong J, Zaman N, Waisberg E, Kamran SA, Lee AG, Tavakkoli A (2022) Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wearable Technol 3:e26. https://doi.org/10.1017/wtc.2022.21

Article  PubMed  PubMed Central  Google Scholar 

Amore F, Silvestri V, Guidobaldi M et al (2023) Efficacy and patients’ satisfaction with the ORCAM MyEye device among visually impaired people: a multicenter study. J Med Syst 47(1):11

Article  PubMed  Google Scholar 

Gao Y, Chandrawanshi R, Nau AC, Tse ZTH (2015) Wearable virtual white cane network for navigating people with visual impairment. Proc Inst Mech Eng Part H J Eng Med 229(9):681–688. https://doi.org/10.1177/0954411915599017

Article  Google Scholar 

Meyer J, Frank A, Schlebusch T, Kasneci E (2022) U-har: A convolutional approach to human activity recognition combining head and eye movements for context-aware smart glasses. Proc ACM Human-Comput Interact 6(ETRA):1–19

Google Scholar 

Díaz D, Yee N, Daum C, Stroulia E, Liu L (2018) Activity classification in independent living environment with JINS MEME eyewear. In: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom). 1–9. https://doi.org/10.1109/PERCOM.2018.8444580

Novac PE, Pegatoquet A, Miramond B, Caquineau C (2022) UCA-EHAR: A dataset for human activity recognition with embedded ai on smart glasses. Appl Sci 12(8). https://doi.org/10.3390/app12083849

Bowers AR, Luo G, Rensing NM, Peli E (2004) Evaluation of a prototype minified augmented-view device for patients with impaired night vision*. Ophthalmic Physiol Opt 24(4):296–312. https://doi.org/10.1111/j.1475-1313.2004.00228.x

Article  PubMed  Google Scholar 

Ikeda Y, Nakatake S, Funatsu J et al (2019) Night-vision aid using see-through display for patients with retinitis pigmentosa. Jpn J Ophthalmol 63(2):181–185. https://doi.org/10.1007/s10384-018-00644-5

Article  PubMed  Google Scholar 

Brodie FL, Ramirez DA, Pandian S et al (2017) Novel positioning sensor with real-time feedback for improved postoperative positioning: pilot study in control subjects. Clin Ophthalmol. 11(null):939–944. https://doi.org/10.2147/OPTH.S135128

Article  PubMed 

Comments (0)

No login
gif