Mathews SC, McShea MJ, Hanley CL, Ravitz A, Labrique AB, Cohen AB (2019) Digital health: a path to validation. npj Digit Med 2(1):38. https://doi.org/10.1038/s41746-019-0111-3
Article PubMed PubMed Central Google Scholar
Bargh M (2019) Digital health software and sensors: internet of things-based healthcare services, wearable medical devices, and real-time data analytics. Am J Med Res 6(2):61–66
Anderson RS, Roark M, Gilbert R, Sumodhee D (2024) Expert CONsensus on Visual Evaluation in Retinal disease manaGEment: the CONVERGE study. Br J Ophthalmol. https://doi.org/10.1136/bjo-2024-325310
Elmisery AM, Rho S, Aborizka M (2019) A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services. Cluster Comput 22:1611–1638
Gia TN, Dhaou IB, Ali M et al (2019) Energy efficient fog-assisted IoT system for monitoring diabetic patients with cardiovascular disease. Futur Gener Comput Syst. 93:198–211
Özdemir V (2019) The big picture on the “AI Turn” for digital health: The Internet of things and cyber-physical systems. Omi A J Integr Biol 23(6):308–311. https://doi.org/10.1089/omi.2019.0069
Honan G, Page A, Kocabas O, Soyata T, Kantarci B (2016) Internet-of-everything oriented implementation of secure Digital Health (D-Health) systems. In: 2016 IEEE Symposium on Computers and Communication (ISCC). 718–725. https://doi.org/10.1109/ISCC.2016.7543821
Kamga P, Mostafa R, Zafar S (2022) The use of wearable ECG devices in the clinical setting: A review. Curr Emerg Hosp Med Rep 10(3):67–72
Article PubMed PubMed Central Google Scholar
Tasoglu S (2022) Toilet-based continuous health monitoring using urine. Nat Rev Urol 19(4):219–230. https://doi.org/10.1038/s41585-021-00558-x
South J, Roberts P, Gao T, Black J, Collins A (2021) Development of a spectacle wear monitor system: SpecsOn monitor. Transl Vis Sci Technol 10(12):11. https://doi.org/10.1167/tvst.10.12.11
Article PubMed PubMed Central Google Scholar
Zafar H, Channa A, Jeoti V, Stojanović GM (2022) Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring. Sensors 22(2). https://doi.org/10.3390/s22020638
Tseng RMWW, Tham YC, Rim TH, Cheng CY (2021) Emergence of non-artificial intelligence digital health innovations in ophthalmology: A systematic review. Clin Exp Ophthalmol 49(7):741–756. https://doi.org/10.1111/ceo.13971
Venkatesh A, Ramulu P (2022) Application of mobile and wearable technology in data collection for ophthalmology. Ophthalmic Epidemiol 14–22
Keenan TDL, Loewenstein A (2023) Artificial intelligence for home monitoring devices. Curr Opin Ophthalmol 34(5):441–448
Korot E, Pontikos N, Drawnel FM, Jaber A, Fu DJ, Zhang G, Miranda MA, Liefers B, Glinton S, Wagner SK, Struyven R, Kilduff C, Moshfeghi DM, Keane PA, Sim DA, Thomas PBM, Balaskas K (2022) Enablers and barriers to deployment of smartphone-based home vision monitoring in clinical practice settings. JAMA Ophthalmol 140(2):153–160. https://doi.org/10.1001/jamaophthalmol
Bastawrous A, Rono HK, Livingstone IAT et al (2015) Development and validation of a smartphone-based visual acuity test (Peek Acuity) for clinical practice and community-based fieldwork. JAMA Ophthalmol 133(8):930–937. https://doi.org/10.1001/jamaophthalmol.2015.1468
Article CAS PubMed PubMed Central Google Scholar
Pur DR, Lee-Wing N, Bona MD (2023) The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefe’s Arch Clin Exp Ophthalmol 261(6):1743–1755. https://doi.org/10.1007/s00417-022-05972-4
Daich Varela M, Sen S, De Guimaraes TAC et al (2023) Artificial intelligence in retinal disease: clinical application, challenges, and future directions. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 261(11):3283–3297. https://doi.org/10.1007/s00417-023-06052-x
Woof W, de Guimarães TAC, Al-Khuzaei S, Varela MD, Sen S, Bagga P, Mendes B, Shah M, Burke P, Parry D, Lin S, Naik G, Ghoshal B, Liefers B, Fu DJ, Georgiou M, Nguyen Q, da Silva AS, Liu Y, Fujinami-Yokokawa Y, Kabiri N, Sumodhee D, Patel P, Furman J, Moghul I, Sallum J, De Silva SR, Lorenz B, Holz F, Fujinami K, Webster AR, Mahroo O, Downes SM, Madhusuhan S, Balaskas K, Michaelides M, Pontikos N (2024) Quantification of fundus autofluorescence features in a molecularly characterized cohort of more than 3000 inherited retinal disease patients from the United Kingdom. medRxiv [Preprint]. 2024.03.24.24304809. https://doi.org/10.1101/2024.03.24.24304809
Seneviratne S, Hu Y, Nguyen T et al (2017) A survey of wearable devices and challenges. IEEE Commun Surv Tutorials 19(4):2573–2620
Jin CY (2019) A review of AI technologies for wearable devices. IOP Conf Ser Mater Sci Eng 688(4):44072. https://doi.org/10.1088/1757-899X/688/4/044072
Weinfurt KP (2022) Constructing and evaluating a validity argument for a performance outcome measure for clinical trials: An example using the multi-luminance mobility test. Clin Trials 19(2):184–193. https://doi.org/10.1177/17407745211073609
Gilbert RM, Sumodhee D, Pontikos N, Hollyhead C, Patrick A, Scarles S, Van Der Smissen S, Young RM, Nettleton N, Webster AR, Cammack J (2022) Collaborative research and development of a novel, patient-centered digital platform (MyEyeSite) for rare inherited retinal disease data: acceptability and feasibility study. JMIR Form Res. 6(1):e21341. https://doi.org/10.2196/21341
Fasano A, Mancini M (2020) Wearable-based mobility monitoring: the long road ahead. Lancet Neurol 19(5):378–379. https://doi.org/10.1016/S1474-4422(20)30033-8
Yadav R, Pradeepa P, Srinivasan S, Rajora CS, Rajalakshmi R (2024) A novel healthcare framework for ambient assisted living using the internet of medical things (IOMT) and deep neural network. Meas Sensors. Published online: 101111. https://doi.org/10.1016/j.measen.2024.101111
Wen L, Cheng Q, Lan W et al (2019) An objective comparison of light intensity and near-visual tasks between rural and urban school children in China by a wearable device clouclip. Transl Vis Sci Technol 8(6):15. https://doi.org/10.1167/tvst.8.6.15
Article PubMed PubMed Central Google Scholar
Pajic B, Zakharov P, Pajic-Eggspuehler B, Cvejic Z (2020) User Friendliness of a Wearable Visual Behavior Monitor for Cataract and Refractive Surgery. Appl Sci 10(6). https://doi.org/10.3390/app10062190
Trzepacz M, Łagodziński P, Grzegorzek M (2019) Electrooculography application in vision therapy using smart glasses BT - Information Technology in Biomedicine. In: Pietka E, Badura P, Kawa J, Wieclawek W, eds. Springer International Publishing; 103–116
Figueiro MG, Hamner R, Bierman A, Rea MS (2012) Comparisons of three practical field devices used to measure personal light exposures and activity levels. Light Res Technol 45(4):421–434. https://doi.org/10.1177/1477153512450453
Article PubMed Central Google Scholar
Martire T, Nazemzadeh P, Cristiano A, Sanna A, Trojaniello D (2018) Digital Screen Detection Using a Head-mounted Color Light Sensor. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA). 1–5. https://doi.org/10.1109/MeMeA.2018.8438717
Min C, Lee E, Park S, Kang S (2019) Tiger: Wearable glasses for the 20–20–20 rule to alleviate computer vision syndrome. In: Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services. 1–11
Sayed AM, Shousha MA, Baharul Islam MD et al (2020) Mobility improvement of patients with peripheral visual field losses using novel see-through digital spectacles. PLoS ONE 15(10):e0240509. https://doi.org/10.1371/journal.pone.0240509
Article CAS PubMed PubMed Central Google Scholar
Ong J, Zaman N, Waisberg E, Kamran SA, Lee AG, Tavakkoli A (2022) Head-mounted digital metamorphopsia suppression as a countermeasure for macular-related visual distortions for prolonged spaceflight missions and terrestrial health. Wearable Technol 3:e26. https://doi.org/10.1017/wtc.2022.21
Article PubMed PubMed Central Google Scholar
Amore F, Silvestri V, Guidobaldi M et al (2023) Efficacy and patients’ satisfaction with the ORCAM MyEye device among visually impaired people: a multicenter study. J Med Syst 47(1):11
Gao Y, Chandrawanshi R, Nau AC, Tse ZTH (2015) Wearable virtual white cane network for navigating people with visual impairment. Proc Inst Mech Eng Part H J Eng Med 229(9):681–688. https://doi.org/10.1177/0954411915599017
Meyer J, Frank A, Schlebusch T, Kasneci E (2022) U-har: A convolutional approach to human activity recognition combining head and eye movements for context-aware smart glasses. Proc ACM Human-Comput Interact 6(ETRA):1–19
Díaz D, Yee N, Daum C, Stroulia E, Liu L (2018) Activity classification in independent living environment with JINS MEME eyewear. In: 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom). 1–9. https://doi.org/10.1109/PERCOM.2018.8444580
Novac PE, Pegatoquet A, Miramond B, Caquineau C (2022) UCA-EHAR: A dataset for human activity recognition with embedded ai on smart glasses. Appl Sci 12(8). https://doi.org/10.3390/app12083849
Bowers AR, Luo G, Rensing NM, Peli E (2004) Evaluation of a prototype minified augmented-view device for patients with impaired night vision*. Ophthalmic Physiol Opt 24(4):296–312. https://doi.org/10.1111/j.1475-1313.2004.00228.x
Ikeda Y, Nakatake S, Funatsu J et al (2019) Night-vision aid using see-through display for patients with retinitis pigmentosa. Jpn J Ophthalmol 63(2):181–185. https://doi.org/10.1007/s10384-018-00644-5
Brodie FL, Ramirez DA, Pandian S et al (2017) Novel positioning sensor with real-time feedback for improved postoperative positioning: pilot study in control subjects. Clin Ophthalmol. 11(null):939–944. https://doi.org/10.2147/OPTH.S135128
Comments (0)