Goodwin D (2014) Homonymous hemianopia: challenges and solutions. Clin Ophthalmol 8:1919–1927
Ghate D, Bodnarchuk B, Sanders S et al (2014) The ability of healthy volunteers to simulate a neurologic field defect on automated perimetry. Ophthalmology 121:. https://doi.org/10.1016/j.ophtha.2013.10.024
Artes PH, Iwase A, Ohno Y et al (2002) Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies. Invest Ophthalmol Vis Sci 43:2654–2659
Piltz JR, Starita RJ (1990) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 109:109–110
Article PubMed CAS Google Scholar
Maddess T (2014) Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefe’s Arch Clin Exp Ophthalmol 252:1611–1619. https://doi.org/10.1007/s00417-014-2751-y
Numata T, Maddess T, Matsumoto C et al (2017) Exploring test-retest variability using high-resolution perimetry. Transl Vis Sci Technol 6:8–8. https://doi.org/10.1167/tvst.6.5.8
Article PubMed PubMed Central Google Scholar
Wall M, Woodward KR, Doyle CK, Artes PH (2009) Repeatability of automated perimetry: A comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Invest Ophthalmol Vis Sci 50:974–979. https://doi.org/10.1167/iovs.08-1789
Harms H (1949) Grundlagen, Methodik und Bedeutung der Pupillenperimetrie für die Physiologie und Pathologie des Sehorgans. Albrecht von Graefes Archiv für Ophthalmologie Vereinigt mit Archiv für Augenheilkunde 149:. https://doi.org/10.1007/BF00684506
Strauch C, Wang C-A, Einhäuser W et al (2022) Pupillometry as an integrated readout of distinct attentional networks. Trends Neurosci. https://doi.org/10.1016/j.tins.2022.05.003
Naber M, Frässle S, Einhäuser W (2011) Perceptual rivalry: Reflexes reveal the gradual nature of visual awareness. PLoS ONE 6:e20910. https://doi.org/10.1371/journal.pone.0020910
Article PubMed PubMed Central CAS Google Scholar
Naber M, Alvarez GA, Nakayama K (2013) Tracking the allocation of attention using human pupillary oscillations. Front Psychol 4:919. https://doi.org/10.3389/fpsyg.2013.00919
Article PubMed PubMed Central Google Scholar
Cibis GW, Campos EC, Aulhorn E (1975) Pupillary Hemiakinesia in Suprageniculate Lesions. Arch Ophthalmol 93:. https://doi.org/10.1001/archopht.1975.01010020954004
Schmid R, Luedtke H, Wilhelm BJ, Wilhelm H (2005) Pupil campimetry in patients with visual field loss. Eur J Neurol 12:602–608. https://doi.org/10.1111/j.1468-1331.2005.01048.x
Article PubMed CAS Google Scholar
Skorkovská K, Wilhelm H, Lüdtke H, Wilhelm B (2009) How sensitive is pupil campimetry in hemifield loss? Graefe’s Arch Clin Exp Ophthalmol 247:947–953. https://doi.org/10.1007/s00417-009-1040-7
Rajan MS, Bremner FD, Riordan-Eva P (2002) Pupil perimetry in the diagnosis of functional visual field loss. J R Soc Med 95:498–500. https://doi.org/10.1258/jrsm.95.10.498
Article PubMed PubMed Central CAS Google Scholar
Kardon RH, Kirkali PA, Thompson HS (1991) Automated pupil perimetry pupil field mapping in patients and normal subjects. Ophthalmology 98:485–496. https://doi.org/10.1016/S0161-6420(91)32267-X
Article PubMed CAS Google Scholar
Takizawa G, Miki A, Maeda F et al (2018) Relative afferent pupillary defects in homonymous visual field defects caused by stroke of the occipital lobe using pupillometer. Neuro-Ophthalmology 42:. https://doi.org/10.1080/01658107.2017.1367012
Maeda F, Kelbsch C, Straßer T et al (2017) Chromatic pupillography in hemianopia patients with homonymous visual field defects. Graefe’s Arch Clin Exp Ophthalmol 255:1837–1842. https://doi.org/10.1007/s00417-017-3721-y
Asakawa K, Ishikawa H (2019) Pupil fields in a patient with early-onset postgeniculate lesion. Graefe’s Arch Clin Exp Ophthalmol 257(2):441–443
Naber M, Roelofzen C, Fracasso A et al (2018) Gaze-contingent flicker pupil perimetry detects scotomas in patients with cerebral visual impairments or glaucoma. Front Neurol 9:558. https://doi.org/10.3389/fneur.2018.00558
Article PubMed PubMed Central Google Scholar
Portengen BL, Porro GL, Imhof SM, Naber M (2023) The trade-off between luminance and color contrast assessed with pupil responses. Transl Vis Sci Technol 12:15–15. https://doi.org/10.1167/TVST.12.1.15
Article PubMed PubMed Central Google Scholar
Portengen BL, Roelofzen C, Porro GL et al (2021) Blind spot and visual field anisotropy detection with flicker pupil perimetry across brightness and task variations. Vision Res 178:79–85. https://doi.org/10.1016/j.visres.2020.10.005
Portengen BL, Naber M, Jansen D et al (2022) Maintaining fixation by children in a virtual reality version of pupil perimetry. J Eye Mov Res 15:. https://doi.org/10.16910/JEMR.15.3.2
Alawa KA, Nolan RP, Han E et al (2021) Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol 105:440–444. https://doi.org/10.1136/bjophthalmol-2019-314031
Razeghinejad R, Gonzalez-Garcia A, Myers JS, Katz LJ (2021) Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma 30:17–23. https://doi.org/10.1097/IJG.0000000000001670
Mees L, Upadhyaya S, Kumar P et al (2020) Validation of a head-mounted virtual reality visual field screening device. J Glaucoma 29:86–91. https://doi.org/10.1097/IJG.0000000000001415
Tsapakis S, Papaconstantinou D, Diagourtas A et al (2018) Home-based visual field test for glaucoma screening comparison with Humphrey perimeter. Clin Ophthalmol 12:2597–2606. https://doi.org/10.2147/OPTH.S187832
Article PubMed PubMed Central Google Scholar
Tsapakis S, Papaconstantinou D, Diagourtas A et al (2017) Visual field examination method using virtual reality glasses compared with the humphrey perimeter. Clin Ophthalmol 11:1431–1443. https://doi.org/10.2147/OPTH.S131160
Article PubMed PubMed Central Google Scholar
He J, Zhang S, Wu P et al (2019) A Novel Virtual Reality Design of Portable Automatic Perimetry. In: IEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc
Deiner MS, Damato BE, Ou Y (2020) Implementing and monitoring at-home virtual reality oculo-kinetic perimetry during COVID-19. Ophthalmology 127:1258
Gestefeld B, Koopman J, Vrijling A et al (2020) Eye tracking and virtual reality in the rehabilitation of mobility of hemianopia patients: a user experience study. Int J Orientation Mobil 11:. https://doi.org/10.21307/vri-2020-002
Soans RS, Renken RJ, John J et al (2021) Patients prefer a virtual reality approach over a similarly performing screen-based approach for continuous oculomotor-based screening of glaucomatous and neuro-ophthalmological visual field defects. Front Neurosci 15:. https://doi.org/10.3389/fnins.2021.745355
Portengen BL, Porro GL, Imhof SM, Naber M (2022) Comparison of unifocal, flicker, and multifocal pupil perimetry methods in healthy adults. J Vis 22:7. https://doi.org/10.1167/jov.22.9.7
Article PubMed PubMed Central Google Scholar
Hong S, Narkiewicz J, Kardon RH (2001) Comparison of pupil perimetry and visual perimetry in normal eyes: decibel sensitivity and variability. Invest Ophthalmol Vis Sci 42:957–965
Sabeti F, James AC, Maddess T (2011) Spatial and temporal stimulus variants for multifocal pupillography of the central visual field. Vision Res 51:303–310. https://doi.org/10.1016/J.VISRES.2010.10.015
Skorkovská K, Wilhelm H, Lüdtke H et al (2014) Investigation of summation mechanisms in the pupillomotor system. Graefe’s Arch Clin Exp Ophthalmol 252:1155–1160. https://doi.org/10.1007/s00417-014-2677-4
Tan L, Kondo M, Sato M et al (2001) Multifocal pupillary light response fields in normal subjects and patients with visual field defects. Vision Res 41:1073–1084. https://doi.org/10.1016/S0042-6989(01)00030-X
Article PubMed CAS Google Scholar
Schmid R, Wilhelm B, Wilhelm H (2000) Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefe’s Arch Clin Exp Ophthalmol 238:. https://doi.org/10.1007/PL00007879
Jariyakosol S, Jaru-Ampornpan P, Manassakorn A et al (2021) Sensitivity and specificity of new visual field screening software for diagnosing hemianopia. Eye Brain 13:. https://doi.org/10.2147/EB.S315403
Gedik S, Akman A, Akova YA (2007) Efficiency of Rarebit perimetry in the evaluation of homonymous hemianopia in stroke patients. Br J Ophthalmol 91:. https://doi.org/10.1136/bjo.2006.112607
Goto K, Miki A, Yamashita T et al (2016) Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 254:745–756.
Comments (0)