Diagnostic performance of pupil perimetry in detecting hemianopia under standard and virtual reality viewing conditions

Goodwin D (2014) Homonymous hemianopia: challenges and solutions. Clin Ophthalmol 8:1919–1927

Ghate D, Bodnarchuk B, Sanders S et al (2014) The ability of healthy volunteers to simulate a neurologic field defect on automated perimetry. Ophthalmology 121:. https://doi.org/10.1016/j.ophtha.2013.10.024

Artes PH, Iwase A, Ohno Y et al (2002) Properties of perimetric threshold estimates from full threshold, SITA standard, and SITA fast strategies. Invest Ophthalmol Vis Sci 43:2654–2659

PubMed  Google Scholar 

Piltz JR, Starita RJ (1990) Test-retest variability in glaucomatous visual fields. Am J Ophthalmol 109:109–110

Article  PubMed  CAS  Google Scholar 

Maddess T (2014) Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefe’s Arch Clin Exp Ophthalmol 252:1611–1619. https://doi.org/10.1007/s00417-014-2751-y

Article  CAS  Google Scholar 

Numata T, Maddess T, Matsumoto C et al (2017) Exploring test-retest variability using high-resolution perimetry. Transl Vis Sci Technol 6:8–8. https://doi.org/10.1167/tvst.6.5.8

Article  PubMed  PubMed Central  Google Scholar 

Wall M, Woodward KR, Doyle CK, Artes PH (2009) Repeatability of automated perimetry: A comparison between standard automated perimetry with stimulus size III and V, matrix, and motion perimetry. Invest Ophthalmol Vis Sci 50:974–979. https://doi.org/10.1167/iovs.08-1789

Article  PubMed  Google Scholar 

Harms H (1949) Grundlagen, Methodik und Bedeutung der Pupillenperimetrie für die Physiologie und Pathologie des Sehorgans. Albrecht von Graefes Archiv für Ophthalmologie Vereinigt mit Archiv für Augenheilkunde 149:. https://doi.org/10.1007/BF00684506

Strauch C, Wang C-A, Einhäuser W et al (2022) Pupillometry as an integrated readout of distinct attentional networks. Trends Neurosci. https://doi.org/10.1016/j.tins.2022.05.003

Article  PubMed  Google Scholar 

Naber M, Frässle S, Einhäuser W (2011) Perceptual rivalry: Reflexes reveal the gradual nature of visual awareness. PLoS ONE 6:e20910. https://doi.org/10.1371/journal.pone.0020910

Article  PubMed  PubMed Central  CAS  Google Scholar 

Naber M, Alvarez GA, Nakayama K (2013) Tracking the allocation of attention using human pupillary oscillations. Front Psychol 4:919. https://doi.org/10.3389/fpsyg.2013.00919

Article  PubMed  PubMed Central  Google Scholar 

Cibis GW, Campos EC, Aulhorn E (1975) Pupillary Hemiakinesia in Suprageniculate Lesions. Arch Ophthalmol 93:. https://doi.org/10.1001/archopht.1975.01010020954004

Schmid R, Luedtke H, Wilhelm BJ, Wilhelm H (2005) Pupil campimetry in patients with visual field loss. Eur J Neurol 12:602–608. https://doi.org/10.1111/j.1468-1331.2005.01048.x

Article  PubMed  CAS  Google Scholar 

Skorkovská K, Wilhelm H, Lüdtke H, Wilhelm B (2009) How sensitive is pupil campimetry in hemifield loss? Graefe’s Arch Clin Exp Ophthalmol 247:947–953. https://doi.org/10.1007/s00417-009-1040-7

Article  Google Scholar 

Rajan MS, Bremner FD, Riordan-Eva P (2002) Pupil perimetry in the diagnosis of functional visual field loss. J R Soc Med 95:498–500. https://doi.org/10.1258/jrsm.95.10.498

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kardon RH, Kirkali PA, Thompson HS (1991) Automated pupil perimetry pupil field mapping in patients and normal subjects. Ophthalmology 98:485–496. https://doi.org/10.1016/S0161-6420(91)32267-X

Article  PubMed  CAS  Google Scholar 

Takizawa G, Miki A, Maeda F et al (2018) Relative afferent pupillary defects in homonymous visual field defects caused by stroke of the occipital lobe using pupillometer. Neuro-Ophthalmology 42:. https://doi.org/10.1080/01658107.2017.1367012

Maeda F, Kelbsch C, Straßer T et al (2017) Chromatic pupillography in hemianopia patients with homonymous visual field defects. Graefe’s Arch Clin Exp Ophthalmol 255:1837–1842. https://doi.org/10.1007/s00417-017-3721-y

Article  Google Scholar 

Asakawa K, Ishikawa H (2019) Pupil fields in a patient with early-onset postgeniculate lesion. Graefe’s Arch Clin Exp Ophthalmol 257(2):441–443

Naber M, Roelofzen C, Fracasso A et al (2018) Gaze-contingent flicker pupil perimetry detects scotomas in patients with cerebral visual impairments or glaucoma. Front Neurol 9:558. https://doi.org/10.3389/fneur.2018.00558

Article  PubMed  PubMed Central  Google Scholar 

Portengen BL, Porro GL, Imhof SM, Naber M (2023) The trade-off between luminance and color contrast assessed with pupil responses. Transl Vis Sci Technol 12:15–15. https://doi.org/10.1167/TVST.12.1.15

Article  PubMed  PubMed Central  Google Scholar 

Portengen BL, Roelofzen C, Porro GL et al (2021) Blind spot and visual field anisotropy detection with flicker pupil perimetry across brightness and task variations. Vision Res 178:79–85. https://doi.org/10.1016/j.visres.2020.10.005

Article  PubMed  Google Scholar 

Portengen BL, Naber M, Jansen D et al (2022) Maintaining fixation by children in a virtual reality version of pupil perimetry. J Eye Mov Res 15:. https://doi.org/10.16910/JEMR.15.3.2

Alawa KA, Nolan RP, Han E et al (2021) Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol 105:440–444. https://doi.org/10.1136/bjophthalmol-2019-314031

Article  PubMed  Google Scholar 

Razeghinejad R, Gonzalez-Garcia A, Myers JS, Katz LJ (2021) Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma 30:17–23. https://doi.org/10.1097/IJG.0000000000001670

Article  PubMed  Google Scholar 

Mees L, Upadhyaya S, Kumar P et al (2020) Validation of a head-mounted virtual reality visual field screening device. J Glaucoma 29:86–91. https://doi.org/10.1097/IJG.0000000000001415

Article  PubMed  Google Scholar 

Tsapakis S, Papaconstantinou D, Diagourtas A et al (2018) Home-based visual field test for glaucoma screening comparison with Humphrey perimeter. Clin Ophthalmol 12:2597–2606. https://doi.org/10.2147/OPTH.S187832

Article  PubMed  PubMed Central  Google Scholar 

Tsapakis S, Papaconstantinou D, Diagourtas A et al (2017) Visual field examination method using virtual reality glasses compared with the humphrey perimeter. Clin Ophthalmol 11:1431–1443. https://doi.org/10.2147/OPTH.S131160

Article  PubMed  PubMed Central  Google Scholar 

He J, Zhang S, Wu P et al (2019) A Novel Virtual Reality Design of Portable Automatic Perimetry. In: IEEE MTT-S 2019 International Microwave Biomedical Conference, IMBioC 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc

Deiner MS, Damato BE, Ou Y (2020) Implementing and monitoring at-home virtual reality oculo-kinetic perimetry during COVID-19. Ophthalmology 127:1258

Article  PubMed  Google Scholar 

Gestefeld B, Koopman J, Vrijling A et al (2020) Eye tracking and virtual reality in the rehabilitation of mobility of hemianopia patients: a user experience study. Int J Orientation Mobil 11:. https://doi.org/10.21307/vri-2020-002

Soans RS, Renken RJ, John J et al (2021) Patients prefer a virtual reality approach over a similarly performing screen-based approach for continuous oculomotor-based screening of glaucomatous and neuro-ophthalmological visual field defects. Front Neurosci 15:. https://doi.org/10.3389/fnins.2021.745355

Portengen BL, Porro GL, Imhof SM, Naber M (2022) Comparison of unifocal, flicker, and multifocal pupil perimetry methods in healthy adults. J Vis 22:7. https://doi.org/10.1167/jov.22.9.7

Article  PubMed  PubMed Central  Google Scholar 

Hong S, Narkiewicz J, Kardon RH (2001) Comparison of pupil perimetry and visual perimetry in normal eyes: decibel sensitivity and variability. Invest Ophthalmol Vis Sci 42:957–965

PubMed  CAS  Google Scholar 

Sabeti F, James AC, Maddess T (2011) Spatial and temporal stimulus variants for multifocal pupillography of the central visual field. Vision Res 51:303–310. https://doi.org/10.1016/J.VISRES.2010.10.015

Article  PubMed  Google Scholar 

Skorkovská K, Wilhelm H, Lüdtke H et al (2014) Investigation of summation mechanisms in the pupillomotor system. Graefe’s Arch Clin Exp Ophthalmol 252:1155–1160. https://doi.org/10.1007/s00417-014-2677-4

Article  Google Scholar 

Tan L, Kondo M, Sato M et al (2001) Multifocal pupillary light response fields in normal subjects and patients with visual field defects. Vision Res 41:1073–1084. https://doi.org/10.1016/S0042-6989(01)00030-X

Article  PubMed  CAS  Google Scholar 

Schmid R, Wilhelm B, Wilhelm H (2000) Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefe’s Arch Clin Exp Ophthalmol 238:. https://doi.org/10.1007/PL00007879

Jariyakosol S, Jaru-Ampornpan P, Manassakorn A et al (2021) Sensitivity and specificity of new visual field screening software for diagnosing hemianopia. Eye Brain 13:. https://doi.org/10.2147/EB.S315403

Gedik S, Akman A, Akova YA (2007) Efficiency of Rarebit perimetry in the evaluation of homonymous hemianopia in stroke patients. Br J Ophthalmol 91:. https://doi.org/10.1136/bjo.2006.112607

Goto K, Miki A, Yamashita T et al (2016) Sectoral analysis of the retinal nerve fiber layer thinning and its association with visual field loss in homonymous hemianopia caused by post-geniculate lesions using spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 254:745–756.

Comments (0)

No login
gif