Differences in motor network reorganization between patients with good and poor upper extremity impairment outcomes after stroke

Aamodt, E. B., Lydersen, S., Alnæs, D., Schellhorn, T., Saltvedt, I., Beyer, M. K., & Håberg, A. (2022). Longitudinal Brain Changes After Stroke and the Association With Cognitive Decline. Frontiers in Neurology, 13, 856919. https://doi.org/10.3389/fneur.2022.856919

Article  PubMed  PubMed Central  Google Scholar 

Broeks, J. G., Lankhorst, G. J., Rumping, K., & Prevo, A. J. (1999). The long-term outcome of arm function after stroke: Results of a follow-up study. Disability and Rehabilitation, 21(8), 357–364. https://doi.org/10.1080/096382899297459

Article  PubMed  CAS  Google Scholar 

Carrera, E., & Tononi, G. (2014). Diaschisis: Past, present, future. Brain, 137(Pt 9), 2408–2422. https://doi.org/10.1093/brain/awu101

Article  PubMed  Google Scholar 

Chen, J. L., & Schlaug, G. (2016). Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Science and Reports, 6, 23271. https://doi.org/10.1038/srep23271

Article  CAS  Google Scholar 

Fan, F., Zhu, C., Chen, H., Qin, W., Ji, X., Wang, L., . . . Yu, C. (2013). Dynamic brain structural changes after left hemisphere subcortical stroke. Human Brain Mapping, 34(8), 1872–1881. https://doi.org/10.1002/hbm.22034

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., . . . Jiang, T. (2016). The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cerebral Cortex, 26(8), 3508–3526. https://doi.org/10.1093/cercor/bhw157

Grafton, S. T., & Volz, L. J. (2019). From ideas to action: The prefrontal-premotor connections that shape motor behavior. Handbook of Clinical Neurology, 163, 237–255. https://doi.org/10.1016/b978-0-12-804281-6.00013-6

Article  PubMed  Google Scholar 

He, H., Luo, C., Chang, X., Shan, Y., Cao, W., Gong, J., . . . Yao, D. (2017). The Functional Integration in the Sensory-Motor System Predicts Aging in Healthy Older Adults. Frontiers in Aging Neuroscience, 8, 306. https://doi.org/10.3389/fnagi.2016.00306

Hensel, L., Tscherpel, C., Freytag, J., Ritter, S., Rehme, A. K., Volz, L. J., . . . Grefkes, C. (2021). Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cerebral Cortex, 31(2), 993–1007. https://doi.org/10.1093/cercor/bhaa270

Jones, D. T., & Graff-Radford, J. (2021). Executive Dysfunction and the Prefrontal Cortex. Continuum (Minneap Minn), 27(6), 1586–1601. https://doi.org/10.1212/con.0000000000001009

Article  PubMed  Google Scholar 

Karabanov, A. N., Shindo, K., Shindo, Y., Raffin, E., & Siebner, H. R. (2021). Multimodal Assessment of Precentral Anodal TDCS: Individual Rise in Supplementary Motor Activity Scales With Increase in Corticospinal Excitability. Frontiers in Human Neuroscience, 15, 639274. https://doi.org/10.3389/fnhum.2021.639274

Article  PubMed  PubMed Central  Google Scholar 

Kocher, M., Gleichgerrcht, E., Nesland, T., Rorden, C., Fridriksson, J., Spampinato, M. V., & Bonilha, L. (2015). Individual variability in the anatomical distribution of nodes participating in rich club structural networks. Frontiers in Neural Circuits, 9, 16. https://doi.org/10.3389/fncir.2015.00016

Article  PubMed  PubMed Central  Google Scholar 

Kristinsson, S., Thors, H., Yourganov, G., Magnusdottir, S., Hjaltason, H., Stark, B. C., . . . Fridriksson, J. (2020). Brain Damage Associated with Impaired Sentence Processing in Acute Aphasia. Journal of Cognitive Neuroscience, 32(2), 256–271. https://doi.org/10.1162/jocn_a_01478

Lam, T. K., Dawson, D. R., Honjo, K., Ross, B., Binns, M. A., Stuss, D. T., . . . Chen, J. L. (2018). Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. Journal of the Neurological Sciences, 384, 21–29. https://doi.org/10.1016/j.jns.2017.11.007

Lee, J., Lee, A., Kim, H., Chang, W. H., & Kim, Y. H. (2018). Differences in motor network dynamics during recovery between supra- and infra-tentorial ischemic strokes. Human Brain Mapping, 39(12), 4976–4986. https://doi.org/10.1002/hbm.24338

Article  PubMed  PubMed Central  Google Scholar 

Li, Q. G., Zhao, C., Shan, Y., Yin, Y. Y., Rong, D. D., Zhang, M., . . . Lu, J. (2020). Dynamic Neural Network Changes Revealed by Voxel-Based Functional Connectivity Strength in Left Basal Ganglia Ischemic Stroke. Frontiers in Neuroscience, 14, 526645. https://doi.org/10.3389/fnins.2020.526645

Lin, L. Y., Ramsey, L., Metcalf, N. V., Rengachary, J., Shulman, G. L., Shimony, J. S., & Corbetta, M. (2018). Stronger prediction of motor recovery and outcome post-stroke by cortico-spinal tract integrity than functional connectivity. PLoS ONE, 13(8), e0202504. https://doi.org/10.1371/journal.pone.0202504

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lindow, J., Domin, M., Grothe, M., Horn, U., Eickhoff, S. B., & Lotze, M. (2016). Connectivity-Based Predictions of Hand Motor Outcome for Patients at the Subacute Stage After Stroke. Frontiers in Human Neuroscience, 10, 101. https://doi.org/10.3389/fnhum.2016.00101

Article  PubMed  PubMed Central  Google Scholar 

Liu, H., Chen, L., Zhang, G., Jiang, Y., Qu, S., Liu, S., . . . Chen, J. (2020). Scalp Acupuncture Enhances the Functional Connectivity of Visual and Cognitive-Motor Function Network of Patients with Acute Ischemic Stroke. Evidence-Based Complementary and Alternative Medicine, 2020, 8836794. https://doi.org/10.1155/2020/8836794

Matchin, W., Basilakos, A., Ouden, D. D., Stark, B. C., Hickok, G., & Fridriksson, J. (2022). Functional differentiation in the language network revealed by lesion-symptom mapping. NeuroImage, 247, 118778. https://doi.org/10.1016/j.neuroimage.2021.118778

Article  PubMed  Google Scholar 

Paul, T., Hensel, L., Rehme, A. K., Tscherpel, C., Eickhoff, S. B., Fink, G. R., . . . Volz, L. J. (2021). Early motor network connectivity after stroke: An interplay of general reorganization and state-specific compensation. Human Brain Mapping, 42(16), 5230–5243. https://doi.org/10.1002/hbm.25612

Pirovano, I., Mastropietro, A., Antonacci, Y., Barà, C., Guanziroli, E., Molteni, F., . . . Rizzo, G. (2022). Resting State EEG Directed Functional Connectivity Unveils Changes in Motor Network Organization in Subacute Stroke Patients After Rehabilitation. Frontiers in Physiology, 13, 862207. https://doi.org/10.3389/fphys.2022.862207

Plantin, J., Verneau, M., Godbolt, A. K., Pennati, G. V., Laurencikas, E., Johansson, B., . . . Lindberg, P. G. (2021). Recovery and Prediction of Bimanual Hand Use After Stroke. Neurology, 97(7), e706-e719. https://doi.org/10.1212/wnl.0000000000012366

Puig, J., Blasco, G., Alberich-Bayarri, A., Schlaug, G., Deco, G., Biarnes, C., . . . Pedraza, S. (2018). Resting-State Functional Connectivity Magnetic Resonance Imaging and Outcome After Acute Stroke. Stroke, 49(10), 2353–2360. https://doi.org/10.1161/strokeaha.118.021319

Python, G., Glize, B., & Laganaro, M. (2018). The involvement of left inferior frontal and middle temporal cortices in word production unveiled by greater facilitation effects following brain damage. Neuropsychologia, 121, 122–134. https://doi.org/10.1016/j.neuropsychologia.2018.10.026

Article  PubMed  Google Scholar 

Schulz, R., Runge, C. G., Bönstrup, M., Cheng, B., Gerloff, C., Thomalla, G., & Hummel, F. C. (2019). Prefrontal-Premotor Pathways and Motor Output in Well-Recovered Stroke Patients. Frontiers in Neurology, 10, 105. https://doi.org/10.3389/fneur.2019.00105

Article  PubMed  PubMed Central  Google Scholar 

Selles, R. W., Andrinopoulou, E. R., Nijland, R. H., van der Vliet, R., Slaman, J., van Wegen, E. E., . . . Kwakkel, G. (2021). Computerised patient-specific prediction of the recovery profile of upper limb capacity within stroke services: the next step. Journal of Neurology, Neurosurgery & Psychiatry, 92(6), 574–581. https://doi.org/10.1136/jnnp-2020-324637

Stinear, C. M., Smith, M. C., & Byblow, W. D. (2019). Prediction Tools for Stroke Rehabilitation. Stroke, 50(11), 3314–3322. https://doi.org/10.1161/strokeaha.119.025696

Article  PubMed  Google Scholar 

Swayne, O. B., Rothwell, J. C., Ward, N. S., & Greenwood, R. J. (2008). Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cerebral Cortex, 18(8), 1909–1922. https://doi.org/10.1093/cercor/bhm218

Article  PubMed  PubMed Central  Google Scholar 

Thibes, R. B., Novaes, N. P., Lucato, L. T., Campanholo, K. R., Melo, L. M., Leite, C. C., . . . Sato, J. R. (2017). Altered Functional Connectivity Between Precuneus and Motor Systems in Parkinson's Disease Patients. Brain Connectivity, 7(10), 643–647. https://doi.org/10.1089/brain.2017.0534

Volz, L. J., Rehme, A. K., Michely, J., Nettekoven, C., Eickhoff, S. B., Fink, G. R., & Grefkes, C. (2016). Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke. Cerebral Cortex, 26(6), 2882–2894. https://doi.org/10.1093/cercor/bhw034

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wei, Y., Wu, L., Wang, Y., Liu, J., Miao, P., Wang, K., . . . Cheng, J. (2020). Disrupted Regional Cerebral Blood Flow and Functional Connectivity in Pontine Infarction: A Longitudinal MRI Study. Frontiers in Aging Neuroscience, 12, 577899. https://doi.org/10.3389/fnagi.2020.577899

Wu, C. W., Lin, S. N., Hsu, L. M., Yeh, S. C., Guu, S. F., Lee, S. H., & Chen, C. C. (2020). Synchrony Between Default-Mode and Sensorimotor Networks Facilitates Motor Function in Stroke Rehabilitation: A Pilot fMRI Study. Frontiers in Neuroscience, 14, 548. https://doi.org/10.3389/fnins.2020.00548

Article  PubMed  PubMed Central  Google Scholar 

Xia, Y., Huang, G., Quan, X., Qin, Q., Li, H., Xu, C., & Liang, Z. (2021). Dynamic Structural and Functional Reorganizations Following Motor Stroke. Medical Science Monitor, 27, e929092. https://doi.org/10.12659/msm.929092

Yamamoto, S., Ishii, D., Ishibashi, K., & Kohno, Y. (2022). Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Cognitive Function Related to Motor Execution During Sequential Task: A Randomized Control Study. Frontiers in Human Neuroscience, 16, 890963. https://doi.org/10.3389/fnhum.2022.890963

Article  PubMed  PubMed Central  Google Scholar 

Yin, D., Song, F., Xu, D., Peterson, B. S., Sun, L., Men, W., . . . Fan, M. (2012). Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke. PLoS One, 7(12), e52727. https://doi.org/10.1371/journal.pone.0052727

Zhang, Y., Liu, H., Wang, L., Yang, J., Yan, R., Zhang, J., . . . Qiu, M. (2016). Relationship between functional connectivity and motor function assessment in stroke patients with hemiplegia: a resting-state functional MRI study. Neuroradiology, 58(5), 503–511. https://doi.org/10.1007/s00234-016-1646-5

Zhao, Z., Wang, X., Fan, M., Yin, D., Sun, L., Jia, J., . . . Gong, J. (2016). Altered Effective Connectivity of the Primary Motor Cortex in Stroke: A Resting-State fMRI Study with Granger Causality Analysis. PLoS One, 11(11), e0166210. https://doi.org/10.1371/journal.pone.0166210

Comments (0)

No login
gif