Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68, 441–451.
Dykxhoorn, D. M., St. Pierre, R., & Linn, T. (1996). A set of compatible tac promoter expression vectors. Gene, 177, 133–136.
Article CAS PubMed Google Scholar
Ebright, R. H., Kolb, A., Buc, H., Kunkel, T. A., Krakow, J. S., & Beckwith, J. (1987). Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: Altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP. Proceedings of the National Academy of Sciences of the United States of America, 84, 6083–6087.
Article CAS PubMed PubMed Central Google Scholar
Evans, A., & Polanyi, M. (1942). Calculation of steric hindrance. Nature, 149, 608.
Gent, M. E., Gärtner, S., Gronenborn, A. M., Sandulache, R., & Clore, G. M. (1987). Site-directed mutants of the cAMP receptor protein-DNA binding of five mutant proteins. Protein Engineering, 1, 201–203.
Article CAS PubMed Google Scholar
Gunasekara, S. M., Hicks, M. N., Park, J., Brooks, C. L., Serate, J., Saunders, C. V., Grover, S. K., Goto, J. J., Lee, J. W., & Youn, H. (2015). Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. The Journal of Biological Chemistry, 290, 26587–26596.
Article CAS PubMed PubMed Central Google Scholar
Harrison, S. C., & Aggarwal, A. K. (1990). DNA recognition by proteins with the helix-turn-helix motif. Annual Review of Biochemistry, 59, 933–969.
Article CAS PubMed Google Scholar
Heyduk, T., & Lee, J. C. (1989). Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities. Biochemistry, 28, 6914–6924.
Article CAS PubMed Google Scholar
Hicks, M., Gunasekara, S., Serate, J., Park, J., Mosharaf, P., Zhou, Y., Lee, J. W., & Youn, H. (2017). Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction. Journal of Microbiology, 55, 816–822.
Article CAS PubMed Google Scholar
Hogema, B. M., Arents, J. C., Bader, R., Eijkemans, K., Inada, T., Aiba, H., & Postma, P. W. (1998). Inducer exclusion by glucose 6-phosphate in Escherichia coli. Molecular Microbiology, 28, 755–765.
Article CAS PubMed Google Scholar
Imai, K., & Mitaku, S. (2005). Mechanisms of secondary structure breakers in soluble proteins. Biophysics, 1, 55–65.
Article CAS PubMed PubMed Central Google Scholar
Körner, H., Sofia, H. J., & Zumft, W. G. (2003). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiology Reviews, 27, 559–592.
Lawson, C. L., Swigon, D., Murikami, K. S., Darst, S. A., Berman, H. M., & Ebright, R. H. (2004). Catabolite activator protein (CAP): DNA binding and transcription activation. Current Opinion in Structural Biology, 14, 10–20.
Article CAS PubMed PubMed Central Google Scholar
Małecki, J., Polit, A., & Wasylewski, Z. (2000). Kinetic studies of cAMP-induced allosteric changes in cyclic AMP receptor protein from Escherichia coli. The Journal of Biological Chemistry, 275, 8480–8486.
Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory.
Monera, O. D., Sereda, T. J., Zhou, N. E., Kay, C. M., & Hodges, R. S. (1995). Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic α-helix. Journal of Peptide Science, 1, 319–329.
Article CAS PubMed Google Scholar
Pace, C. N., & Scholtz, J. M. (1998). A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 75, 422–427.
Article CAS PubMed PubMed Central Google Scholar
Parkinson, G., Wilson, C., Gunasekera, A., Ebright, E. W., Ebright, R. E., & Berman, H. M. (1996). Structure of CAP-DNA complex at 2.5 Å resolution: A complete picture of the protein DNA interface. Journal of Molecular Biology, 260, 395–408.
Article CAS PubMed Google Scholar
Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–438.
Article CAS PubMed Google Scholar
Roberts, G. P., Youn, H., & Kerby, R. L. (2004). CO-sensing mechanisms. Microbiology and Molecular Biology Reviews, 68, 453–473.
Article CAS PubMed PubMed Central Google Scholar
Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M., & Pabo, C. O. (1982). Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature, 298, 447–451.
Article CAS PubMed Google Scholar
Savery, N. J., Lloyd, G. S., Kainz, M., Gaal, T., Ross, W., Ebright, R. H., Gourse, R. L., & Busby, S. J. (1998). Transcription activation at Class II CRP-dependent promoters: Identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. EMBO Journal, 17, 3439–3447.
Article CAS PubMed PubMed Central Google Scholar
Schultz, S. C., Shields, G. C., & Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science, 253, 1001–1007.
Article CAS PubMed Google Scholar
Scott, S. P., & Jarjous, S. (2005). Proposed structural mechanism of Escherichia coli cAMP receptor protein cAMP-dependent proteolytic cleavage protection and selective and nonselective DNA binding. Biochemistry, 44, 8730–8748.
Article CAS PubMed Google Scholar
Youn, H., & Carranza, M. (2023). cAMP activation of the cAMP receptor protein, a model bacterial transcription factor. Journal of Microbiology, 61, 277–287.
Article CAS PubMed Google Scholar
Youn, H., Kerby, R. L., Conrad, M., & Roberts, G. P. (2006). Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. The Journal of Biological Chemistry, 281, 1119–1127.
Article CAS PubMed Google Scholar
Youn, H., Kerby, R. L., Koh, J., & Roberts, G. P. (2007). A C-helix residue, Arg-123, has important roles in both the active and inactive forms of the cAMP receptor protein. The Journal of Biological Chemistry, 282, 3632–3639.
Article CAS PubMed Google Scholar
Youn, H., Koh, J., & Roberts, G. P. (2008). Two-state allosteric modeling suggests protein equilibrium as an integral component for cyclic AMP (cAMP) specificity in the cAMP receptor protein of Escherichia coli. Journal of Bacteriology, 190, 4532–4540.
Article CAS PubMed PubMed Central Google Scholar
Zhang, X. P., & Ebright, R. H. (1990). Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proceedings of the National Academy of Sciences of the United States of America, 87, 4717–4721.
Article CAS PubMed PubMed Central Google Scholar
Zhang, X., Zhou, Y., Ebright, Y. W., & Ebright, R. H. (1992). Catabolite gene activator protein (CAP) is not an “acidic activating region” transcription activator protein. Negatively charged amino acids of CAP that are solvent-accessible in the CAP-DNA complex play no role in transcription activation at the lac promoter. The Journal of Biological Chemistry, 267, 8136–8139.
Comments (0)