Unexpected Requirement of Small Amino Acids at Position 183 for DNA Binding in the Escherichia coli cAMP Receptor Protein

Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68, 441–451.

Article  CAS  Google Scholar 

Dykxhoorn, D. M., St. Pierre, R., & Linn, T. (1996). A set of compatible tac promoter expression vectors. Gene, 177, 133–136.

Article  CAS  PubMed  Google Scholar 

Ebright, R. H., Kolb, A., Buc, H., Kunkel, T. A., Krakow, J. S., & Beckwith, J. (1987). Role of glutamic acid-181 in DNA-sequence recognition by the catabolite gene activator protein (CAP) of Escherichia coli: Altered DNA-sequence-recognition properties of [Val181]CAP and [Leu181]CAP. Proceedings of the National Academy of Sciences of the United States of America, 84, 6083–6087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Evans, A., & Polanyi, M. (1942). Calculation of steric hindrance. Nature, 149, 608.

Article  CAS  Google Scholar 

Gent, M. E., Gärtner, S., Gronenborn, A. M., Sandulache, R., & Clore, G. M. (1987). Site-directed mutants of the cAMP receptor protein-DNA binding of five mutant proteins. Protein Engineering, 1, 201–203.

Article  CAS  PubMed  Google Scholar 

Gunasekara, S. M., Hicks, M. N., Park, J., Brooks, C. L., Serate, J., Saunders, C. V., Grover, S. K., Goto, J. J., Lee, J. W., & Youn, H. (2015). Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. The Journal of Biological Chemistry, 290, 26587–26596.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harrison, S. C., & Aggarwal, A. K. (1990). DNA recognition by proteins with the helix-turn-helix motif. Annual Review of Biochemistry, 59, 933–969.

Article  CAS  PubMed  Google Scholar 

Heyduk, T., & Lee, J. C. (1989). Escherichia coli cAMP receptor protein: Evidence for three protein conformational states with different promoter binding affinities. Biochemistry, 28, 6914–6924.

Article  CAS  PubMed  Google Scholar 

Hicks, M., Gunasekara, S., Serate, J., Park, J., Mosharaf, P., Zhou, Y., Lee, J. W., & Youn, H. (2017). Gly184 of the Escherichia coli cAMP receptor protein provides optimal context for both DNA binding and RNA polymerase interaction. Journal of Microbiology, 55, 816–822.

Article  CAS  PubMed  Google Scholar 

Hogema, B. M., Arents, J. C., Bader, R., Eijkemans, K., Inada, T., Aiba, H., & Postma, P. W. (1998). Inducer exclusion by glucose 6-phosphate in Escherichia coli. Molecular Microbiology, 28, 755–765.

Article  CAS  PubMed  Google Scholar 

Imai, K., & Mitaku, S. (2005). Mechanisms of secondary structure breakers in soluble proteins. Biophysics, 1, 55–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Körner, H., Sofia, H. J., & Zumft, W. G. (2003). Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: Exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiology Reviews, 27, 559–592.

Article  PubMed  Google Scholar 

Lawson, C. L., Swigon, D., Murikami, K. S., Darst, S. A., Berman, H. M., & Ebright, R. H. (2004). Catabolite activator protein (CAP): DNA binding and transcription activation. Current Opinion in Structural Biology, 14, 10–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Małecki, J., Polit, A., & Wasylewski, Z. (2000). Kinetic studies of cAMP-induced allosteric changes in cyclic AMP receptor protein from Escherichia coli. The Journal of Biological Chemistry, 275, 8480–8486.

Article  PubMed  Google Scholar 

Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory.

Google Scholar 

Monera, O. D., Sereda, T. J., Zhou, N. E., Kay, C. M., & Hodges, R. S. (1995). Relationship of sidechain hydrophobicity and alpha-helical propensity on the stability of the single-stranded amphipathic α-helix. Journal of Peptide Science, 1, 319–329.

Article  CAS  PubMed  Google Scholar 

Pace, C. N., & Scholtz, J. M. (1998). A helix propensity scale based on experimental studies of peptides and proteins. Biophysical Journal, 75, 422–427.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parkinson, G., Wilson, C., Gunasekera, A., Ebright, E. W., Ebright, R. E., & Berman, H. M. (1996). Structure of CAP-DNA complex at 2.5 Å resolution: A complete picture of the protein DNA interface. Journal of Molecular Biology, 260, 395–408.

Article  CAS  PubMed  Google Scholar 

Ramachandran, G. N., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–438.

Article  CAS  PubMed  Google Scholar 

Roberts, G. P., Youn, H., & Kerby, R. L. (2004). CO-sensing mechanisms. Microbiology and Molecular Biology Reviews, 68, 453–473.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M., & Pabo, C. O. (1982). Homology among DNA-binding proteins suggests use of a conserved super-secondary structure. Nature, 298, 447–451.

Article  CAS  PubMed  Google Scholar 

Savery, N. J., Lloyd, G. S., Kainz, M., Gaal, T., Ross, W., Ebright, R. H., Gourse, R. L., & Busby, S. J. (1998). Transcription activation at Class II CRP-dependent promoters: Identification of determinants in the C-terminal domain of the RNA polymerase alpha subunit. EMBO Journal, 17, 3439–3447.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz, S. C., Shields, G. C., & Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90°. Science, 253, 1001–1007.

Article  CAS  PubMed  Google Scholar 

Scott, S. P., & Jarjous, S. (2005). Proposed structural mechanism of Escherichia coli cAMP receptor protein cAMP-dependent proteolytic cleavage protection and selective and nonselective DNA binding. Biochemistry, 44, 8730–8748.

Article  CAS  PubMed  Google Scholar 

Youn, H., & Carranza, M. (2023). cAMP activation of the cAMP receptor protein, a model bacterial transcription factor. Journal of Microbiology, 61, 277–287.

Article  CAS  PubMed  Google Scholar 

Youn, H., Kerby, R. L., Conrad, M., & Roberts, G. P. (2006). Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. The Journal of Biological Chemistry, 281, 1119–1127.

Article  CAS  PubMed  Google Scholar 

Youn, H., Kerby, R. L., Koh, J., & Roberts, G. P. (2007). A C-helix residue, Arg-123, has important roles in both the active and inactive forms of the cAMP receptor protein. The Journal of Biological Chemistry, 282, 3632–3639.

Article  CAS  PubMed  Google Scholar 

Youn, H., Koh, J., & Roberts, G. P. (2008). Two-state allosteric modeling suggests protein equilibrium as an integral component for cyclic AMP (cAMP) specificity in the cAMP receptor protein of Escherichia coli. Journal of Bacteriology, 190, 4532–4540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X. P., & Ebright, R. H. (1990). Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP-DNA complex. Proceedings of the National Academy of Sciences of the United States of America, 87, 4717–4721.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, X., Zhou, Y., Ebright, Y. W., & Ebright, R. H. (1992). Catabolite gene activator protein (CAP) is not an “acidic activating region” transcription activator protein. Negatively charged amino acids of CAP that are solvent-accessible in the CAP-DNA complex play no role in transcription activation at the lac promoter. The Journal of Biological Chemistry, 267, 8136–8139.

Article  CAS  PubMed 

Comments (0)

No login
gif