Adak, A., & Khan, M. R. (2019). An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences, 76, 473–493.
Article PubMed CAS Google Scholar
Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin. Microbiome, 6, 90.
Article PubMed PubMed Central Google Scholar
Buttó, L. F., & Haller, D. (2016). Dysbiosis in intestinal inflammation: Cause or consequence. International Journal of Medical Microbiology, 306, 302–309.
Cani, P. D. (2018). Human gut microbiome: Hopes, threats and promises. Gut, 67, 1716–1725.
Article PubMed CAS Google Scholar
Cani, P. D., Depommier, C., Derrien, M., Everard, A., & de Vos, W. M. (2022). Akkermansia muciniphila: Paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology & Hepatology, 19, 625–637.
Chang, Y. C., & Kim, C. H. (2022). Molecular research of glycolysis. International Journal of Molecular Sciences, 23, 5052.
Article PubMed PubMed Central Google Scholar
Chauhan, D. S., Gupta, P., Pottoo, F. H., & Amir, M. (2020). Secondary metabolites in the treatment of diabetes mellitus: A paradigm shift. Current Drug Metabolism, 21, 493–511.
Article PubMed CAS Google Scholar
Chen, H. C., Liu, Y. W., Chang, K. C., Wu, Y. W., Chen, Y. M., Chao, Y. K., You, M. Y., Lundy, D. J., Lin, C. J., Hsieh, M. L., et al. (2023). Gut butyrate-producers confer post-infarction cardiac protection. Nature Communications, 14, 7249.
Article PubMed PubMed Central CAS Google Scholar
Dambrova, M., Zuurbier, C. J., Borutaite, V., Liepinsh, E., & Makrecka-Kuka, M. (2021). Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radical Biology and Medicine, 165, 24–37.
Article PubMed CAS Google Scholar
Dinakaran, V., Rathinavel, A., Pushpanathan, M., Sivakumar, R., Gunasekaran, P., & Rajendhran, J. (2014). Elevated levels of circulating DNA in cardiovascular disease patients: Metagenomic profiling of microbiome in the circulation. PLoS ONE, 9, e105221.
Article PubMed PubMed Central Google Scholar
Doenst, T., Bonow, R. O., Bhatt, D. L., Falk, V., & Gaudino, M. (2021). Improving terminology to describe coronary artery procedures JACC review topic of the week. Journal of the American College of Cardiology, 78, 180–188.
Embley, T. M., Faquir, N., Bossart, W., & Collins, M. D. (1989). Lactobacillus vaginalis sp. nov. from the human vagina. International Journal of Systematic Bacteriology, 39, 368–370.
Fraccarollo, D., Galuppo, P., Sieweke, J. T., Napp, L. C., Grobbecker, P., & Bauersachs, J. (2015). Efficacy of mineralocorticoid receptor antagonism in the acute myocardial infarction phase: Eplerenone versus spironolactone. ESC Heart Failure, 2, 150–158.
Article PubMed PubMed Central Google Scholar
Gan, X. T., Ettinger, G., Huang, C. X., Burton, J. P., Haist, J. V., Rajapurohitam, V., Sidaway, J. E., Martin, G., Gloor, G. B., Swann, J. R., et al. (2014). Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circulation-Heart Failure, 7, 491–499.
Gao, E., Lei, Y. H., Shang, X., Huang, Z. M., Zuo, L., Boucher, M., Fan, Q., Chuprun, J. K., Ma, X. L., & Koch, W. J. (2010). A novel and efficient model of coronary artery ligation and myocardial infarction in the mouse. Circulation Research, 107, 1445–1453.
Article PubMed PubMed Central CAS Google Scholar
Giordani, B., Abruzzo, A., Parolin, C., Foschi, C., Laghi, L., Marangoni, A., Luppi, B., & Vitali, B. (2023a). Prebiotic activity of vaginal lactobacilli on bifidobacteria: From concept to formulation. Microbiology Spectrum, 11, e0200922.
Giordani, B., Naldi, M., Croatti, V., Parolin, C., Erdoğan, Ü., Bartolini, M., & Vitali, B. (2023b). Exopolysaccharides from vaginal lactobacilli modulate microbial biofilms. Microbial Cell Factories, 22, 45.
Article PubMed PubMed Central CAS Google Scholar
Giordani, B., Parolin, C., Abruzzo, A., Foschi, C., Marangoni, A., Luppi, B., & Vitali, B. (2023c). Limosilactobacillus vaginalis exerts bifidogenic effects: A novel postbiotic strategy for infant prebiotic supplementation. Nutrients, 15, 4433.
Article PubMed PubMed Central CAS Google Scholar
González-Correa, C., Moleón, J., Miñano, S., Robles-Vera, I., Toral, M., Martín-Morales, N., O’Valle, F., Sánchez, M., Gómez-Guzmán, M., Jiménez, R., et al. (2023). Mineralocorticoid receptor blockade improved gut microbiota dysbiosis by reducing gut sympathetic tone in spontaneously hypertensive rats. Biomedicine & Pharmacotherapy, 158, 114149.
Huson, D. H., Mitra, S., Ruscheweyh, H. J., Weber, N., & Schuster, S. C. (2011). Integrative analysis of environmental sequences using MEGAN4. Genome Research, 21, 1552–1560.
Article PubMed PubMed Central CAS Google Scholar
Jie, Z., Xia, H., Zhong, S., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., Gao, Y., Zhao, H., et al. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8, 845.
Article PubMed PubMed Central Google Scholar
Jimeno, R., Brailey, P. M., & Barral, P. (2018). Quantitative polymerase chain reaction-based analyses of murine intestinal microbiota after oral antibiotic treatment. Journal of Visualized Experiments, 141, e58481.
Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28, 1947–1951.
Article PubMed PubMed Central CAS Google Scholar
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51, D587–D592.
Article PubMed CAS Google Scholar
Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.
Article PubMed PubMed Central CAS Google Scholar
Katada, J., Meguro, T., Saito, H., Ohashi, A., Anzai, T., Ogawa, S., & Yoshikawa, T. (2005). Persistent cardiac aldosterone synthesis in angiotensin II type 1A receptor-knockout mice after myocardial infarction. Circulation, 111, 2157–2164.
Article PubMed CAS Google Scholar
Kaye, D. M., Shihata, W. A., Jama, H. A., Tsyganov, K., Ziemann, M., Kiriazis, H., Horlock, D., Vijay, A., Giam, B., Vinh, A., et al. (2020). Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation, 141, 1393–1403.
Article PubMed CAS Google Scholar
Kayrak, M., Bacaksiz, A., Vatankulu, M. A., Ayhan, S. S., Ari, H., Kaya, Z., & Ozdemir, K. (2010). The effects of spironolactone on atrial remodeling in patients with preserved left ventricular function after an acute myocardial infarction: A randomized follow-up study. Coronary Artery Disease, 21, 477–485.
Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y. S., De Vadder, F., Arora, T., Hallen, A., Martens, E., Björck, I., & Bäckhed, F. (2015). Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism, 22, 971–982.
Article PubMed CAS Google Scholar
Lam, V., Su, J., Hsu, A., Gross, G. J., Salzman, N. H., & Baker, J. E. (2016). Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE, 11, e0160840.
Article PubMed PubMed Central Google Scholar
Le, T. Y. L., Mardini, M., Howell, V. M., Funder, J. W., Ashton, A. W., & Mihailidou, A. S. (2012). Low-dose spironolactone prevents apoptosis repressor with caspase recruitment domain degradation during myocardial infarction. Hypertension., 59, 1164–1169.
Comments (0)