Agmon, N., Pur, S., Liefshitz, B., & Kupiec, M. (2009). Analysis of repair mechanism choice during homologous recombination. Nucleic Acids Research, 37, 5081–5092.
Article CAS PubMed PubMed Central Google Scholar
Alvaro, D., Lisby, M., & Rothstein, R. (2007). Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genetics, 3, e228.
Article PubMed PubMed Central Google Scholar
Al-Zain, A. M., & Symington, L. S. (2021). The dark side of homology-directed repair. DNA Repair, 106, 103181.
Article CAS PubMed Google Scholar
Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., & Cullin, C. (1993). A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Research, 21, 3329–3330.
Article CAS PubMed PubMed Central Google Scholar
Bétermier, M., Bertrand, P., & Lopez, B. S. (2014). Is non-homologous end-joining really an inherently error-prone process? PLoS Genetics, 10, e1004086.
Article PubMed PubMed Central Google Scholar
Bhargava, R., Onyango, D. O., & Stark, J. M. (2016). Regulation of single-strand annealing and its role in genome maintenance. Trends in Genetics, 32, 566–575.
Article CAS PubMed Google Scholar
Blasiak, J. (2021). Single-strand annealing in cancer. International Journal of Molecular Sciences, 22, 2167.
Article CAS PubMed PubMed Central Google Scholar
Ceccaldi, R., Rondinelli, B., & D’Andrea, A. D. (2016). Repair pathway choices and consequences at the double-strand break. Trends in Cell Biology, 26, 52–64.
Article CAS PubMed Google Scholar
Cejka, P., & Symington, L. S. (2021). DNA end resection: Mechanism and control. Annual Review of Genetics, 55, 285–307.
Article CAS PubMed Google Scholar
Chang, H. H. Y., Pannunzio, N. R., Adachi, N., & Lieber, M. R. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biology, 18, 495–506.
Article CAS PubMed PubMed Central Google Scholar
Choi, D. H., Lee, R., Kwon, S. H., & Bae, S. H. (2013). Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae. Journal of Microbiology, 51, 105–112.
Choi, J. H., Lim, Y. S., Kim, M. K., & Bae, S. H. (2020). Analysis of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae. Journal of Microbiology, 58, 957–966.
Article CAS PubMed Google Scholar
Dang, V. D., Valens, M., Bolotin-Fukuhara, M., & Daignan-Fornier, B. (1996). Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: Differential regulation by the CCAAT-box-binding factor. Molecular Microbiology, 22, 681–692.
Article CAS PubMed Google Scholar
Ferrari, E., Bruhn, C., Peretti, M., Cassani, C., Carotenuto, W. V., Elgendy, M., Shubassi, G., Lucca, C., Bermejo, R., Varasi, M., et al. (2017). PP2A controls genome integrity by integrating nutrient-sensing and metabolic pathways with the DNA damage response. Molecular Cell, 67, 266–281.
Article CAS PubMed PubMed Central Google Scholar
Gaidutšik, I., Sedman, T., Sillamaa, S., & Sedman, J. (2016). Irc3 is a mitochondrial DNA branch migration enzyme. Scientific Reports, 6, 26414.
Article PubMed PubMed Central Google Scholar
Gallagher, D. N., Pham, N., Tsai, A. M., Janto, N. V., Choi, J., Ira, G., & Haber, J. E. (2020). A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genetics, 16, e1008689.
Article CAS PubMed PubMed Central Google Scholar
Ira, G., & Haber, J. E. (2002). Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Molecular and Cellular Biology, 22, 6384–6392.
Article CAS PubMed PubMed Central Google Scholar
Jalal, D., Chalissery, J., Iqbal, M., & Hassan, A. H. (2021). The ATPase Irc20 facilitates Rad51 chromatin enrichment during homologous recombination in yeast Saccharomyces cerevisiae. DNA Repair, 97, 103019.
Article CAS PubMed Google Scholar
Lee, S. E., Moore, J. K., Holmes, A., Umezu, K., Kolodner, R. D., & Haber, J. E. (1998). Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell, 94, 399–409.
Article CAS PubMed Google Scholar
Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.
Article CAS PubMed PubMed Central Google Scholar
Lisby, M., Barlow, J. H., Burgess, R. C., & Rothstein, R. (2004). Choreography of the DNA damage response: Spatiotemporal relationships among checkpoint and repair proteins. Cell, 118, 699–713.
Article CAS PubMed Google Scholar
Lisby, M., Rothstein, R., & Mortensen, U. H. (2001). Rad52 forms DNA repair and recombination centers during S phase. Proceedings of the National Academy of Sciences of the United States of America, 98, 8276–8282.
Article CAS PubMed PubMed Central Google Scholar
Litwin, I., Bakowski, T., Szakal, B., Pilarczyk, E., Maciaszczyk-Dziubinska, E., Branzei, D., & Wysocki, R. (2018). Error-free DNA damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. The EMBO Journal, 37, e98732.
Article PubMed PubMed Central Google Scholar
Moore, J. K., & Haber, J. E. (1996). Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Molecular and Cellular Biology, 16, 2164–2173.
Article CAS PubMed PubMed Central Google Scholar
Myung, K., & Kolodner, R. D. (2003). Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair, 2, 243–258.
Article CAS PubMed Google Scholar
Ranjha, L., Howard, S. M., & Cejka, P. (2018). Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma, 127, 187–214.
Article CAS PubMed Google Scholar
San-Segundo, P. A., & Clemente-Blanco, A. (2020). Resolvases, dissolvases, and helicases in homologous recombination: Clearing the road for chromosome segregation. Genes, 11, 71.
Article CAS PubMed PubMed Central Google Scholar
West, S. C., Blanco, M. G., Chan, Y. W., Matos, J., Sarbajna, S., & Wyatt, H. D. (2015). Resolution of recombination intermediates: Mechanisms and regulation. Cold Spring Harbor Symposia on Quantitative Biology, 80, 103–109.
Zhou, H., Costaguta, G., & Payne, G. S. (2019). Clathrin adaptor complex-interacting protein Irc6 functions through the conserved C-terminal domain. Scientific Reports, 9, 4436.
Comments (0)