Kado DM, Prenovost K, Crandall C (2007) Narrative review: hyperkyphosis in older persons. Ann Intern Med 147:330–338. https://doi.org/10.7326/0003-4819-147-5-200709040-00008
O’Lynnger TM, Zuckerman SL, Morone PJ, Dewan MC, Vasquez-Castellanos RA, Cheung JS (2015) Trends for spine surgery for the Elderly: implications for Access to Healthcare in North America. Neurosurgery 77:S136–S141. https://doi.org/10.1227/NEU.0000000000000945
Imagama S, Matsuyama Y, Hasegawa Y, Sakai Y, Ito Z, Ishiguru N, Hamajima N (2011) Back muscle strength and spinal mobility are predictors of quality of life in middle-aged and elderly males. Eur Spine J 20:954–961. https://doi.org/10.1016/j.spinee.2011.08.420
Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30:2024–2029. https://doi.org/10.1097/01.brs.0000179086.30449.96
Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE (2010) Age-related hyperkyphosis: its causes, consequences, and management. J Orthop Sport Phys Ther 40:352–360. https://www.jospt.org/doi/https://doi.org/10.2519/jospt.2010.3099
Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW (1996) Correlation of back extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient women. Am J Phys Med Rehabil 75:370–374. https://doi.org/10.1097/00002060-199609000-00013
Article CAS PubMed Google Scholar
Mika A, Unnithan VB, Mika P (2005) Differences in thoracic kyphosis and in back muscle strength in women with bone loss due to osteoporosis. Spine 30:241–246. https://doi.org/10.1097/01.brs.0000150521.10071.df
Granito RN, Aveiro MC, Renno ACM, Oishi J, Driusso P (2012) Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study. Arch Gerontol Geriatr 54:e199–e202. https://doi.org/10.1016/j.archger.2011.05.012
Roghani T, Zavieh MK, Manshadi FD, King N, Katzman W (2016) Age-related hyperkyphosis: update of its potential causes and clinical impacts - narrative review. Aging Clin Exp Res 1–11. https://doi.org/10.1007/s40520-016-0617-3
Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192. https://doi.org/10.1113/jphysiol.1966.sp007909
Article CAS PubMed PubMed Central Google Scholar
Edman KA (1979) The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol 291:143–159. https://doi.org/10.1113/jphysiol.1979.sp012804
Article CAS PubMed PubMed Central Google Scholar
Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546. https://doi.org/10.1073/pnas.83.10.3542
Article CAS PubMed PubMed Central Google Scholar
Granzier HL, Akster HA, Ter Keurs HE (1991) Effect of thin filament length on the force-sarcomere length relation of skeletal muscle. Am J Physiol Cell Physiol 260:C1060–C1070. https://doi.org/10.1152/ajpcell.1991.260.5.C1060
Gokhin DS, Bang ML, Zhang J, Chen J, Lieber RL (2009) Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties. Am J Physiol Cell Physiol 296:C1123–C1132, 2009. https://doi.org/10.1152/ajpcell.00503.2008
Ottenheijm CA, Witt CC, Stienen GJ, Labeit S, Beggs AH, Granzier H (2009) Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency. Hum Mol Genet 18:2359–2369. https://doi.org/10.1093/hmg/ddp168
Article CAS PubMed PubMed Central Google Scholar
Ochala J, Ravenscroft G, Laing NG, Nowak KJ (2012) Nemaline myopathy-related skeletal muscle α-actin (ACTA1) mutation, Asp286Gly, prevents proper strong myosin binding and triggers muscle weakness. PLoS ONE 7:e45923. https://doi.org/10.1371/journal.pone.0045923
Article CAS PubMed PubMed Central Google Scholar
Street J, Lenehan B, Albietz J, Bishop P, Dvorak M, Fisher C (2009) Intraobserver and interobserver reliability of measures of kyphosis in thoracolumbar fractures. Spine J 9:464–469. https://doi.org/10.1016/j.spinee.2009.02.007
Yamada K, Aota Y, Higashi T, Ishida K, Nimura T, Saito T (2015) Accuracies in measuring spinopelvic parameters in full-spine lateral standing radiograph. Spine 40:E640–E646. https://doi.org/10.1097/BRS.0000000000000904
Nakarai H, Simon CZ, Adida S, Samuel J, Araghi K, Kim HJ, Lovecchio FC (2024) Reliability of vertebral pelvic angles in assessment of spinal alignment. Global Spine J 21925682241235607. https://doi.org/10.1177/21925682241235607
Roche SM, Gumucio JP, Brooks SV, Mendias CL, Claflin DR (2015) Measurement of maximum isometric force generated by permeabilized skeletal muscle fibres. J Vis Exp 100:e52695. https://doi.org/10.3791/52695
Noonan AM, Oxland TR, Brown SHM (2022) Investigating the active contractile function of the rat paraspinal muscles reveals unique cross-bridge kinetics in the multifidus. Eur Spine J 31:783–791. https://doi.org/10.1007/s00586-022-07120-2
Mohammed GA, Hou M (2015) Optimization of active muscle force–length models using least squares curve fitting. IEEE Trans Biomed Eng 63:630–635. https://doi.org/10.1109/TBME.2015.2467169
Lynn R, Talbot JA, Morgan DL (1998) Differences in rat skeletal muscles after incline and decline running. J Appl Physiol 85:98–104. https://doi.org/10.1152/jappl.1998.85.1.98
Article CAS PubMed Google Scholar
Gokhin DS, Kim NE, Lewis SA, Hoenecke HR, D’Lima DD, Fowler VM (2012) Thin-filament length correlates with fiber type in human skeletal muscle. Am J Physiol Cell Physiol 302:C555–C565. https://doi.org/10.1152/ajpcell.00299.2011
Article CAS PubMed Google Scholar
Littlefield R, Fowler VM (2002) Measurement of thin filament lengths by distributed deconvolution analysis of fluorescence images. Biophys J 82:2548–2564. https://doi.org/10.1016/S0006-3495(02)75598-7
Article CAS PubMed PubMed Central Google Scholar
Gokhin DS, Fowler VM (2017) Software-based measurement of thin filament lengths: an open‐source GUI for distributed deconvolution analysis of fluorescence images. J Microsc 265:11–20. https://doi.org/10.1111/jmi.12456
Article CAS PubMed Google Scholar
Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T (2003) Single muscle fibre contractile properties in young and old men and women. J Physiol 552:47–58. https://doi.org/10.1113/jphysiol.2003.044966
Article CAS PubMed PubMed Central Google Scholar
Krivickas LS, Fielding RA, Murray A, Callahan D, Johansson A, Dorer DJ, Frontera WR (2006) Sex differences in single muscle fiber power in older adults. Med Sci Sports Exerc 38:57–63. https://doi.org/10.1249/01.mss.0000180357.58329.b1
Slivka D, Raue U, Hollon C, Minchev K, Trappe S (2008) Single muscle fiber adaptations to resistance training in old (> 80 yr) men: evidence for limited skeletal muscle plasticity. Am J Physiol Regul Integr Comp Physiol 295:R273–R280. https://doi.org/10.1152/ajpregu.00093.2008
Article CAS PubMed PubMed Central Google Scholar
Reid KF, Doros G, Clark DJ, Patten C, Carabello RJ, Cloutier GJ, Phillips EM, Krivickas LS, Frontera WR, Fielding RA (2012) Muscle power failure in mobility-limited older adults: preserved single fiber function despite lower whole muscle size, quality and rate of neuromuscular activation. Eur J Appl Physiol 112:2289–2301. https://doi.org/10.1007/s00421-011-2200-0
Gollapudi SK, Lin DC (2009) Experimental determination of sarcomere force–length relationship in type-I human skeletal muscle fibers. J Biomech 42:2011–2016.
Comments (0)