Tiz, D. B., Bagnoli, L., Rosati, O., Marini, F., Sancineto, L., & Santi, C. (2022). New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use. Molecules, 27(5), 1643. https://doi.org/10.3390/molecules27051643
Gribble, G. W. (1998). Naturally occurring organohalogen compounds. Accounts of Chemical Research, 31(3), 141–152. https://doi.org/10.1021/ar9701777
Podzelinska, K., Latimer, R., Bhattacharya, A., Vining, L. C., Zechel, D. L., & Jia, Z. (2010). Chloramphenicol biosynthesis: The structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Journal of Molecular Biology, 397(1), 316–331. https://doi.org/10.1016/j.jmb.2010.01.020
Article CAS PubMed Google Scholar
Yeh, E., Garneau, S., & Walsh, C. T. (2005). Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proceedings of the National Academy of Sciences U S A, 102(11), 3960–3965. https://doi.org/10.1073/pnas.0500755102
Fraley, A. E., Garcia-Borràs, M., Tripathi, A., Khare, D., Mercado-Marin, E. V., Tran, H., Dan, Q., Webb, G. P., Watts, K. R., Crews, P., Sarpong, R., Williams, R. M., Smith, J. L., Houk, K. N., & Sherman, D. H. (2017). Function and structure of MalA/MalA’, iterative halogenases for late-stage C-H functionalization of indole alkaloids. Journal of the American Chemical Society, 139(34), 12060–12068. https://doi.org/10.1021/jacs.7b06773
Article CAS PubMed PubMed Central Google Scholar
Neumann, C. S., Fujimori, D. G., & Walsh, C. T. (2008). Halogenation strategies in natural product biosynthesis. Chemistry & Biology, 15(2), 99–109. https://doi.org/10.1016/j.chembiol.2008.01.006
Büchler, J., Papadopoulou, A., & Buller, R. (2019). Recent advances in flavin-dependent halogenase biocatalysis: Sourcing, engineering, and application. Catalysts, 9(12), 1030. https://doi.org/10.3390/catal9121030
Hanefeld, U., Hollmann, F., & Paul, C. E. (2022). Biocatalysis making waves in organic chemistry. Chemical Society Reviews, 51(2), 594–627. https://doi.org/10.1039/d1cs00100k
Article CAS PubMed Google Scholar
Montua, N., & Sewald, N. (2023). Extended biocatalytic halogenation cascades involving a single-polypeptide regeneration system for diffusible FADH2. ChemBioChem. https://doi.org/10.1002/cbic.202300478
Jiang, Y., Snodgrass, H. M., Zubi, Y. S., Roof, C. V., Guan, Y., Mondal, D., Honeycutt, N. H., Lee, J. W., Lewis, R. D., Martinez, C. A., & Lewis, J. C. (2022). The single-component flavin reductase/flavin-dependent halogenase AetF is a versatile catalyst for selective bromination and iodination of arenes and olefins. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202214610
Payne, J. T., Andorfer, M. C., & Lewis, J. C. (2013). Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angewandte Chemie International Edition, 52(20), 5271–5274. https://doi.org/10.1002/anie.201300762
Article CAS PubMed Google Scholar
Frese, M., & Sewald, N. (2015). Enzymatic halogenation of tryptophan on a gram scale. Angewandte Chemie International Edition, 54(1), 298–301. https://doi.org/10.1002/anie.201408561
Article CAS PubMed Google Scholar
Veldmann, K. H., Dachwitz, S., Risse, J. M., Lee, J. H., Sewald, N., & Wendisch, V. F. (2019). Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 7, 219. https://doi.org/10.3389/fbioe.2019.00219
Article PubMed PubMed Central Google Scholar
Montua, N., Thye, P., Hartwig, P., Kuhle, M., & Sewald, N. (2024). Enzymatic peptide and protein bromination: The BromoTrp Tag. Angewandte Chemie International Edition, 63(5), e202314961. https://doi.org/10.1002/anie.202314961
Article CAS PubMed Google Scholar
Dong, C., Flecks, S., Unversucht, S., Haupt, C., van Pée, K. H., & Naismith, J. H. (2005). Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science, 309(5744), 2216–2219. https://doi.org/10.1126/science.1116510
Article CAS PubMed PubMed Central Google Scholar
Zhu, X., De Laurentis, W., Leang, K., Herrmann, J., Ihlefeld, K., van Pée, K. H., & Naismith, J. H. (2009). Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. Journal of Molecular Biology, 391(1), 74–85. https://doi.org/10.1016/j.jmb.2009.06.008
Article CAS PubMed PubMed Central Google Scholar
Moritzer, A. C., Minges, H., Prior, T., Frese, M., Sewald, N., & Niemann, H. H. (2019). Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry, 294(7), 2529–2542. https://doi.org/10.1074/jbc.RA118.005393
Article CAS PubMed Google Scholar
Lang, A., Polnick, S., Nicke, T., William, P., Patallo, E. P., Naismith, J. H., & van Pée, K. H. (2011). Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis. Angewandte Chemie International Edition, 50(13), 2951–2953. https://doi.org/10.1002/anie.201007896
Article CAS PubMed Google Scholar
Buedenbender, S., Rachid, S., Müller, R., & Schulz, G. E. (2009). Structure and action of the myxobacterial chondrochloren halogenase CndH: A new variant of FAD-dependent halogenases. Journal of Molecular Biology, 385(2), 520–530. https://doi.org/10.1016/j.jmb.2008.10.057
Article CAS PubMed Google Scholar
Yeh, E., Blasiak, L. C., Koglin, A., Drennan, C. L., & Walsh, C. T. (2007). Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry, 46(5), 1284–1292. https://doi.org/10.1021/bi0621213
Article CAS PubMed Google Scholar
Barker, R. D., Yu, Y., De Maria, L., Johannissen, L. O., & Scrutton, N. S. (2022). Mechanism of Action of Flavin-Dependent Halogenases. ACS Catalysis, 12(24), 15352–15360. https://doi.org/10.1021/acscatal.2c05231
Article CAS PubMed PubMed Central Google Scholar
Phintha, A., Prakinee, K., Jaruwat, A., Lawan, N., Visitsatthawong, S., Kantiwiriyawanitch, C., Songsungthong, W., Trisrivirat, D., Chenprakhon, P., Mulholland, A., van Pée, K. H., Chitnumsub, P., & Chaiyen, P. (2020). Dissecting the low catalytic capability of flavin-dependent halogenases. Journal of Biological Chemistry, 296, 100068. https://doi.org/10.1074/jbc.RA120.016004
Article PubMed PubMed Central Google Scholar
Flecks, S., Patallo, E. P., Zhu, X., Ernyei, A. J., Seifert, G., Schneider, A., Dong, C., Naismith, J. H., & van Pée, K. H. (2008). New insights into the mechanism of enzymatic chlorination of tryptophan. Angewandte Chemie International Edition, 47(49), 9533–9536. https://doi.org/10.1002/anie.200802466
Article CAS PubMed Google Scholar
Moritzer, A. C., & Niemann, H. H. (2019). Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled. Protein Science, 28(12), 2112–2118. https://doi.org/10.1002/pro.3739
Article CAS PubMed PubMed Central Google Scholar
Schroeder, L., Diepold, N., Gäfe, S., Niemann, H. H., & Kottke, T. (2024). Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy. Journal of Biological Chemistry, 300(4), 107210. https://doi.org/10.1016/j.jbc.2024.107210
Article CAS PubMed PubMed Central Google Scholar
Frese, M., Guzowska, P. H., Voss, H., & Sewald, N. (2014). Regioselective enzymatic halogenation of substituted tryptophan derivatives using the FAD-dependent halogenase RebH. ChemCatChem, 6(5), 1270–1276. https://doi.org/10.1002/cctc.201301090
Ismail, M., Schroeder, L., Frese, M., Kottke, T., Hollmann, F., Paul, C. E., & Sewald, N. (2019). Straightforward regeneration of reduced flavin adenine dinucleotide required for enzymatic tryptophan halogenation. ACS Catalysis, 9(2), 1389–1395. https://doi.org/10.1021/acscatal.8b04500
Comments (0)