Balance between photoreduction efficiency, cofactor affinity, and allosteric coupling of halogenase flavoenzymes

Tiz, D. B., Bagnoli, L., Rosati, O., Marini, F., Sancineto, L., & Santi, C. (2022). New halogen-containing drugs approved by FDA in 2021: An overview on their syntheses and pharmaceutical use. Molecules, 27(5), 1643. https://doi.org/10.3390/molecules27051643

Article  CAS  Google Scholar 

Gribble, G. W. (1998). Naturally occurring organohalogen compounds. Accounts of Chemical Research, 31(3), 141–152. https://doi.org/10.1021/ar9701777

Article  CAS  Google Scholar 

Podzelinska, K., Latimer, R., Bhattacharya, A., Vining, L. C., Zechel, D. L., & Jia, Z. (2010). Chloramphenicol biosynthesis: The structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond. Journal of Molecular Biology, 397(1), 316–331. https://doi.org/10.1016/j.jmb.2010.01.020

Article  CAS  PubMed  Google Scholar 

Yeh, E., Garneau, S., & Walsh, C. T. (2005). Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. Proceedings of the National Academy of Sciences U S A, 102(11), 3960–3965. https://doi.org/10.1073/pnas.0500755102

Article  CAS  Google Scholar 

Fraley, A. E., Garcia-Borràs, M., Tripathi, A., Khare, D., Mercado-Marin, E. V., Tran, H., Dan, Q., Webb, G. P., Watts, K. R., Crews, P., Sarpong, R., Williams, R. M., Smith, J. L., Houk, K. N., & Sherman, D. H. (2017). Function and structure of MalA/MalA’, iterative halogenases for late-stage C-H functionalization of indole alkaloids. Journal of the American Chemical Society, 139(34), 12060–12068. https://doi.org/10.1021/jacs.7b06773

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neumann, C. S., Fujimori, D. G., & Walsh, C. T. (2008). Halogenation strategies in natural product biosynthesis. Chemistry & Biology, 15(2), 99–109. https://doi.org/10.1016/j.chembiol.2008.01.006

Article  CAS  Google Scholar 

Büchler, J., Papadopoulou, A., & Buller, R. (2019). Recent advances in flavin-dependent halogenase biocatalysis: Sourcing, engineering, and application. Catalysts, 9(12), 1030. https://doi.org/10.3390/catal9121030

Article  CAS  Google Scholar 

Hanefeld, U., Hollmann, F., & Paul, C. E. (2022). Biocatalysis making waves in organic chemistry. Chemical Society Reviews, 51(2), 594–627. https://doi.org/10.1039/d1cs00100k

Article  CAS  PubMed  Google Scholar 

Montua, N., & Sewald, N. (2023). Extended biocatalytic halogenation cascades involving a single-polypeptide regeneration system for diffusible FADH2. ChemBioChem. https://doi.org/10.1002/cbic.202300478

Article  PubMed  Google Scholar 

Jiang, Y., Snodgrass, H. M., Zubi, Y. S., Roof, C. V., Guan, Y., Mondal, D., Honeycutt, N. H., Lee, J. W., Lewis, R. D., Martinez, C. A., & Lewis, J. C. (2022). The single-component flavin reductase/flavin-dependent halogenase AetF is a versatile catalyst for selective bromination and iodination of arenes and olefins. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.202214610

Article  PubMed  Google Scholar 

Payne, J. T., Andorfer, M. C., & Lewis, J. C. (2013). Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angewandte Chemie International Edition, 52(20), 5271–5274. https://doi.org/10.1002/anie.201300762

Article  CAS  PubMed  Google Scholar 

Frese, M., & Sewald, N. (2015). Enzymatic halogenation of tryptophan on a gram scale. Angewandte Chemie International Edition, 54(1), 298–301. https://doi.org/10.1002/anie.201408561

Article  CAS  PubMed  Google Scholar 

Veldmann, K. H., Dachwitz, S., Risse, J. M., Lee, J. H., Sewald, N., & Wendisch, V. F. (2019). Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 7, 219. https://doi.org/10.3389/fbioe.2019.00219

Article  PubMed  PubMed Central  Google Scholar 

Montua, N., Thye, P., Hartwig, P., Kuhle, M., & Sewald, N. (2024). Enzymatic peptide and protein bromination: The BromoTrp Tag. Angewandte Chemie International Edition, 63(5), e202314961. https://doi.org/10.1002/anie.202314961

Article  CAS  PubMed  Google Scholar 

Dong, C., Flecks, S., Unversucht, S., Haupt, C., van Pée, K. H., & Naismith, J. H. (2005). Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science, 309(5744), 2216–2219. https://doi.org/10.1126/science.1116510

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, X., De Laurentis, W., Leang, K., Herrmann, J., Ihlefeld, K., van Pée, K. H., & Naismith, J. H. (2009). Structural insights into regioselectivity in the enzymatic chlorination of tryptophan. Journal of Molecular Biology, 391(1), 74–85. https://doi.org/10.1016/j.jmb.2009.06.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moritzer, A. C., Minges, H., Prior, T., Frese, M., Sewald, N., & Niemann, H. H. (2019). Structure-based switch of regioselectivity in the flavin-dependent tryptophan 6-halogenase Thal. Journal of Biological Chemistry, 294(7), 2529–2542. https://doi.org/10.1074/jbc.RA118.005393

Article  CAS  PubMed  Google Scholar 

Lang, A., Polnick, S., Nicke, T., William, P., Patallo, E. P., Naismith, J. H., & van Pée, K. H. (2011). Changing the regioselectivity of the tryptophan 7-halogenase PrnA by site-directed mutagenesis. Angewandte Chemie International Edition, 50(13), 2951–2953. https://doi.org/10.1002/anie.201007896

Article  CAS  PubMed  Google Scholar 

Buedenbender, S., Rachid, S., Müller, R., & Schulz, G. E. (2009). Structure and action of the myxobacterial chondrochloren halogenase CndH: A new variant of FAD-dependent halogenases. Journal of Molecular Biology, 385(2), 520–530. https://doi.org/10.1016/j.jmb.2008.10.057

Article  CAS  PubMed  Google Scholar 

Yeh, E., Blasiak, L. C., Koglin, A., Drennan, C. L., & Walsh, C. T. (2007). Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry, 46(5), 1284–1292. https://doi.org/10.1021/bi0621213

Article  CAS  PubMed  Google Scholar 

Barker, R. D., Yu, Y., De Maria, L., Johannissen, L. O., & Scrutton, N. S. (2022). Mechanism of Action of Flavin-Dependent Halogenases. ACS Catalysis, 12(24), 15352–15360. https://doi.org/10.1021/acscatal.2c05231

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phintha, A., Prakinee, K., Jaruwat, A., Lawan, N., Visitsatthawong, S., Kantiwiriyawanitch, C., Songsungthong, W., Trisrivirat, D., Chenprakhon, P., Mulholland, A., van Pée, K. H., Chitnumsub, P., & Chaiyen, P. (2020). Dissecting the low catalytic capability of flavin-dependent halogenases. Journal of Biological Chemistry, 296, 100068. https://doi.org/10.1074/jbc.RA120.016004

Article  PubMed  PubMed Central  Google Scholar 

Flecks, S., Patallo, E. P., Zhu, X., Ernyei, A. J., Seifert, G., Schneider, A., Dong, C., Naismith, J. H., & van Pée, K. H. (2008). New insights into the mechanism of enzymatic chlorination of tryptophan. Angewandte Chemie International Edition, 47(49), 9533–9536. https://doi.org/10.1002/anie.200802466

Article  CAS  PubMed  Google Scholar 

Moritzer, A. C., & Niemann, H. H. (2019). Binding of FAD and tryptophan to the tryptophan 6-halogenase Thal is negatively coupled. Protein Science, 28(12), 2112–2118. https://doi.org/10.1002/pro.3739

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schroeder, L., Diepold, N., Gäfe, S., Niemann, H. H., & Kottke, T. (2024). Coupling and regulation mechanisms of the flavin-dependent halogenase PyrH observed by infrared difference spectroscopy. Journal of Biological Chemistry, 300(4), 107210. https://doi.org/10.1016/j.jbc.2024.107210

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frese, M., Guzowska, P. H., Voss, H., & Sewald, N. (2014). Regioselective enzymatic halogenation of substituted tryptophan derivatives using the FAD-dependent halogenase RebH. ChemCatChem, 6(5), 1270–1276. https://doi.org/10.1002/cctc.201301090

Article  CAS  Google Scholar 

Ismail, M., Schroeder, L., Frese, M., Kottke, T., Hollmann, F., Paul, C. E., & Sewald, N. (2019). Straightforward regeneration of reduced flavin adenine dinucleotide required for enzymatic tryptophan halogenation. ACS Catalysis, 9(2), 1389–1395. https://doi.org/10.1021/acscatal.8b04500

Article  CAS  PubMed  PubMed Central

Comments (0)

No login
gif