Leray, E., Moreau, T., Fromont, A., & Edan, G. (2016). Epidemiology of multiple sclerosis. Revue Neurologique (Paris), 172, 3–13. https://doi.org/10.1016/j.neurol.2015.10.006
Zarghami, A., Li, Y., Claflin, S. B., van der Mei, I., & Taylor, B. V. (2021). Role of environmental factors in multiple sclerosis. Expert Review of Neurotherapeutics, 21, 1389–1408. https://doi.org/10.1080/14737175.2021.1978843
Article CAS PubMed Google Scholar
Simpson, S., Blizzard, L., Otahal, P., Van Der Mei, I., & Taylor, B. (2011). Latitude is significantly associated with the prevalence of multiple sclerosis: A meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 82, 1132–1141. https://doi.org/10.1136/jnnp.2011.240432
Simpson, S., Wang, W., Otahal, P., Blizzard, L., Van Der Mei, I. A. F., & Taylor, B. V. (2019). Latitude continues to be significantly associated with the prevalence of multiple sclerosis: An updated meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 90, 1193–1200. https://doi.org/10.1136/jnnp-2018-320189
Sabel, C. E., Pearson, J. F., Mason, D. F., Willoughby, E., Abernethy, D. A., & Taylor, B. V. (2021). The latitude gradient for multiple sclerosis prevalence is established in the early life course. Brain, 144, 2038–2046. https://doi.org/10.1093/brain/awab104
Hedström, A. K., Åkerstedt, T., Olsson, T., & Alfredsson, L. (2015). Shift work influences multiple sclerosis risk. Multiple Sclerosis, 21, 1195–1199. https://doi.org/10.1177/1352458514563592
Stenger, S., Grasshoff, H., Hundt, J. E., & Lange, T. (2022). Potential effects of shift work on skin autoimmune diseases. Frontiers in Immunology, 13, 1000951. https://doi.org/10.3389/fimmu.2022.1000951
Article CAS PubMed Google Scholar
Ghareghani, M., Reiter, R. J., Zibara, K., & Farhadi, N. (2018). Latitude, vitamin D, melatonin, and gut microbiota act in concert to initiate multiple sclerosis: A new mechanistic pathway. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.02484
Article PubMed PubMed Central Google Scholar
Simpson, S., Jr., van der Mei, I., & Taylor, B. (2018). The role of vitamin D in multiple sclerosis: Biology and biochemistry, epidemiology and potential roles in treatment. Medicinal Chemistry (Los Angeles), 14, 2018. https://doi.org/10.2174/1573406413666170921143600
Sintzel, M. B., Rametta, M., & Reder, A. T. (2018). Vitamin D and multiple sclerosis: A comprehensive review. Neurology and Therapy, 7, 59–85. https://doi.org/10.1007/s40120-017-0086-4
Miclea, A., Bagnoud, M., Chan, A., & Hoepner, R. (2020). A brief review of the effects of vitamin D on multiple sclerosis. Frontiers in Immunology, 11, 1–10. https://doi.org/10.3389/fimmu.2020.00781
Langer-Gould, A., Lucas, R., Xiang, A. H., Chen, L. H., Wu, J., Gonzalez, E., Haraszti, S., Smith, J. B., Quach, H., Barcellos, L. F., MS Sunshine Study. (2018). Sun exposure but not vitamin D is associated with multiple sclerosis risk in blacks and Hispanics. Nutrients. https://doi.org/10.3390/nu10030268
Article PubMed PubMed Central Google Scholar
Lam, T., VoPham, T., Munger, K. L., Laden, F., & Hart, J. E. (2020). Long-term effects of latitude, ambient temperature, and ultraviolet radiation on the incidence of multiple sclerosis in two cohorts of US women. Environmental Epidemiology, 4, e0105. https://doi.org/10.1097/EE9.0000000000000105
Article PubMed PubMed Central Google Scholar
Hedström, A. K., Olsson, T., Kockum, I., Hillert, J., & Alfredsson, L. (2020). Low sun exposure increases multiple sclerosis risk both directly and indirectly. Journal of Neurology, 267, 1045–1052. https://doi.org/10.1007/s00415-019-09677-3
Article CAS PubMed Google Scholar
Ostkamp, P., Salmen, A., Pignolet, B., Görlich, D., Andlauer, T. F. M., Schulte-Mecklenbeck, A., Gonzalez-Escamilla, G., Bucciarelli, F., Gennero, I., Breuer, J., Antony, G., Schneider-Hohendorf, T., Mykicki, N., Bayas, A., Then Bergh, F., Bittner, S., Hartung, H.-P., Friese, M. A., Linker, R. A., … Schwab, N. (2021). German competence network multiple sclerosis (KKNMS) and the BIONAT network, sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proceedings of the National Academy of Sciences, 7, 4. https://doi.org/10.1073/pnas.2018457118
Smolders, J., Torkildsen, Ø., Camu, W., & Holmøy, T. (2019). An update on vitamin D and disease activity in multiple sclerosis. CNS Drugs, 33, 1187–1199. https://doi.org/10.1007/s40263-019-00674-8
Article CAS PubMed PubMed Central Google Scholar
van Langelaar, J., Rijvers, L., Smolders, J., & van Luijn, M. M. (2020). B and T cells driving multiple sclerosis: Identity, mechanisms and potential triggers. Frontiers in Immunology, 11, 1–12. https://doi.org/10.3389/fimmu.2020.00760
Tao, J.-H., Cheng, M., Tang, J.-P., Liu, Q., Pan, F., & Li, X.-P. (2017). Foxp3, regulatory T cell, and autoimmune diseases. Inflammation, 40, 328–339. https://doi.org/10.1007/s10753-016-0470-8
Article CAS PubMed Google Scholar
Goswami, T. K., Singh, M., Dhawan, M., Mitra, S., Bin-Emran, T., Rabaan, A. A., Al Mutair, A., Al Alawi, Z., Alhumaid, S., & Dhama, K. (2022). Regulatory T cells (Tregs) and their therapeutic potential against autoimmune disorders: Advances and challenges. Human Vaccines & Immunotherapeutics, 18, 2035117. https://doi.org/10.1080/21645515.2022.2035117
Mexhitaj, I., Nyirenda, M. H., Li, R., O’Mahony, J., Rezk, A., Rozenberg, A., Moore, C. S., Johnson, T., Sadovnick, D., Collins, D. L., Arnold, D. L., Gran, B., Yeh, E. A., Marrie, R. A., Banwell, B., & Bar-Or, A. (2019). Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain, 142, 617–632. https://doi.org/10.1093/brain/awz017
Article PubMed PubMed Central Google Scholar
Verma, N. D., Lam, A. D., Chiu, C., Tran, G. T., Hall, B. M., & Hodgkinson, S. J. (2021). Multiple sclerosis patients have reduced resting and increased activated CD4+CD25+FOXP3+T regulatory cells. Scientific Reports, 11, 10476. https://doi.org/10.1038/s41598-021-88448-5
Article CAS PubMed PubMed Central Google Scholar
Salpietro, V., Polizzi, A., Recca, G., & Ruggieri, M. (2018). The role of puberty and adolescence in the pathobiology of pediatric multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 3, 2. https://doi.org/10.1186/s40893-017-0032-4
Arruvito, L., Sanz, M., Banham, A. H., & Fainboim, L. (2007). Expansion of CD4+CD25+and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: Implications for human reproduction. The Journal of Immunology, 178, 2572–2578. https://doi.org/10.4049/jimmunol.178.4.2572
Article CAS PubMed Google Scholar
Robinson, G. A., Peng, J., Peckham, H., Butler, G., Pineda-Torra, I., Ciurtin, C., & Jury, E. C. (2022). Investigating sex differences in T regulatory cells from cisgender and transgender healthy individuals and patients with autoimmune inflammatory disease: A cross-sectional study. The Lancet Rheumatology, 4, e710–e724. https://doi.org/10.1016/S2665-9913(22)00198-9
Article CAS PubMed PubMed Central Google Scholar
Hince, M., Sakkal, S., Vlahos, K., Dudakov, J., Boyd, R., & Chidgey, A. (2008). The role of sex steroids and gonadectomy in the control of thymic involution. Cellular Immunology, 252, 122–138. https://doi.org/10.1016/j.cellimm.2007.10.007
Article CAS PubMed Google Scholar
Downton, P., Early, J. O., & Gibbs, J. E. (2020). Circadian rhythms in adaptive immunity. Immunology, 161, 268–277. https://doi.org/10.1111/imm.13167
Article CAS PubMed PubMed Central Google Scholar
Dimitrov, S., Benedict, C., Heutling, D., Westermann, J., Born, J., & Lange, T. (2009). Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood, 113, 5134–5143. https://doi.org/10.1182/blood-2008-11-190769
Article CAS PubMed PubMed Central Google Scholar
Cain, D. W., & C
Comments (0)