Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., Kotowski, K., & Kulbacka, J. (2018). Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049
Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2005). Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2, 1–23. https://doi.org/10.1016/S1572-1000(05)00030-X
Article CAS PubMed PubMed Central Google Scholar
Dobson, J., de Queiroz, G. F., & Golding, J. P. (2018). Photodynamic therapy and diagnosis: Principles and comparative aspects. Veterinary Journal, 233, 8–18. https://doi.org/10.1016/j.tvjl.2017.11.012
Article CAS PubMed Google Scholar
Gonçalves, L. C. P. (2021). Photophysical properties and therapeutic use of natural photosensitizers. Journal of Photochemistry and Photobiology, 7, 100052.
Sabino, C. P., Wainwright, M., Ribeiro, M. S., Sellera, F. P., Dos Anjos, C., Baptista, M. D. S., & Lincopan, N. (2020). Global priority multidrug-resistant pathogens do not resist photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 208, 111893. https://doi.org/10.1016/j.jphotobiol.2020.111893
Article CAS PubMed Google Scholar
Kvam, E., & Benner, K. (2020). Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 209, 111899. https://doi.org/10.1016/j.jphotobiol.2020.111899
Article CAS PubMed Google Scholar
Siewert, B., & Stuppner, H. (2019). The photoactivity of natural products - An overlooked potential of phytomedicines? Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 60, 152985. https://doi.org/10.1016/j.phymed.2019.152985
Article CAS PubMed Google Scholar
Gong, C., Li, Y., Gao, R., Xiao, F., Zhou, X., Wang, H., Xu, H., Wang, R., Huang, P., & Zhao, Y. (2020). Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 31, 101827. https://doi.org/10.1016/j.pdpdt.2020.101827
Article CAS PubMed Google Scholar
Pan, H., Wang, D., & Zhang, F. (2020). In vitro antimicrobial effect of curcumin-based photodynamic therapy on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy, 32, 102055. https://doi.org/10.1016/j.pdpdt.2020.102055
Article CAS PubMed Google Scholar
Paolillo, F. R., Rodrigues, P. G. S., Bagnato, V. S., Alves, F., Pires, L., & Corazza, A. V. (2021). The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus-infected wounds in rats. Lasers in Medical Science, 36(6), 1219–1226. https://doi.org/10.1007/s10103-020-03160-6
Tao, R., Zhang, F., Tang, Q. J., Xu, C. S., Ni, Z. J., & Meng, X. H. (2019). Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chemistry, 274, 415–421. https://doi.org/10.1016/j.foodchem.2018.08.042
Article CAS PubMed Google Scholar
Cardoso, D. R., Libardi, S. H., & Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function, 3(5), 487–502. https://doi.org/10.1039/c2fo10246c
Bertel, L., Mendez-Sanchez, S. C., & Martínez-Ortega, F. (2021). Laser photo-thermal therapy of epithelial carcinoma using pterin-6-carboxylic acid conjugated gold nanoparticles. Photochemical & Photobiological Sciences, 20(12), 1599–1609. https://doi.org/10.1007/s43630-021-00122-x
Hübinger, L., Runge, R., Rosenberg, T., Freudenberg, R., Kotzerke, J., & Brogsitter, C. (2022). Psoralen as a photosensitizers for photodynamic therapy by means of in vitro Cherenkov light. International Journal of Molecular Sciences, 23(23), 15233. https://doi.org/10.3390/ijms232315233
Article CAS PubMed PubMed Central Google Scholar
Barroso, R. A., Navarro, R., Tim, C. R., de Paula Ramos, L., de Oliveira, L. D., Araki, Â. T., Fernandes, K. G. C., Macedo, D., & Assis, L. (2021). Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: In vitro study. Lasers in Medical Science, 36(6), 1235–1240. https://doi.org/10.1007/s10103-020-03163-3
Zhang, J. N., Zhang, F., Tang, Q. J., Xu, C. S., & Meng, X. H. (2018). Effect of photodynamic inactivation of Escherichia coli by hypericin. World Journal of Microbiology & Biotechnology, 34(7), 100. https://doi.org/10.1007/s11274-018-2464-1
Alam, S. T., Le, T. A. N., Park, J. S., Kwon, H. C., & Kang, K. (2019). Antimicrobial biophotonic treatment of ampicillin-resistant Pseudomonas aeruginosa with hypericin and ampicillin cotreatment followed by orange light. Pharmaceutics, 11(12), 641. https://doi.org/10.3390/pharmaceutics11120641
Article CAS PubMed PubMed Central Google Scholar
Theodossiou, T. A., Hothersall, J. S., De Witte, P. A., Pantos, A., & Agostinis, P. (2009). The multifaceted photocytotoxic profile of hypericin. Molecular Pharmaceutics, 6(6), 1775–1789. https://doi.org/10.1021/mp900166q
Article CAS PubMed Google Scholar
Yang, Y., Wang, C., Zhuge, Y., Zhang, J., Xu, K., Zhang, Q., Zhang, H., Chen, H., Chu, M., & Jia, C. (2019). Photodynamic antifungal activity of hypocrellin A against Candida albicans. Frontiers in Microbiology, 10, 1810. https://doi.org/10.3389/fmicb.2019.01810
Article PubMed PubMed Central Google Scholar
Wang, T., Xu, L., Shen, H., Cao, X., Wei, Q., Ghiladi, R. A., & Wang, Q. (2020). Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose. Cellulose, 27, 991–1007. https://doi.org/10.1007/s10570-019-02852-9
Jiang, C., Scholle, F., Jin, F., Wei, Q., Wang, Q., & Ghiladi, R. A. (2024). Chlorophyllin as a photosensitizer in photodynamic antimicrobial materials. Cellulose, 31(4), 2475–2491. https://doi.org/10.1007/s10570-024-05758-3
Lan, Y., Lu, S., Zheng, B., Tang, Z., Li, J., & Zhang, J. (2021). Combinatory effect of ALA-PDT and itraconazole treatment for Trichosporon asahii. Lasers in Surgery and Medicine, 53(5), 722–730. https://doi.org/10.1002/lsm.23343
Wang, Y., Li, J., Geng, S., Wang, X., Cui, Z., Ma, W., Yuan, M., Liu, C., & Ji, Y. (2021). Aloe-emodin-mediated antimicrobial photodynamic therapy against multidrug-resistant Acinetobacter baumannii: An in vivo study. Photodiagnosis and Photodynamic Therapy, 34, 102311. https://doi.org/10.1016/j.pdpdt.2021.102311
Article CAS PubMed Google Scholar
Wamer, W. G., Vath, P., & Falvey, D. E. (2003). In vitro studies on the photobiological properties of aloe emodin and aloin A. Free Radical Biology & Medicine, 34(2), 233–242. https://doi.org/10.1016/s0891-5849(02)01242-x
Mugas, M. L., Calvo, G., Marioni, J., Céspedes, M., Martinez, F., Vanzulli, S., Sáenz, D., Di Venosa, G., Nuñez Montoya, S., & Casas, A. (2021). Photosensitization of a subcutaneous tumour by the natural anthraquinone parietin and blue light. Scientific Reports, 11(1), 23820. https://doi.org/10.1038/s41598-021-03339-z
Article CAS PubMed PubMed Central Google Scholar
Och, A., Podgórski, R., & Nowak, R. (2020). Biological activity of berberine—a summary update. Toxins, 12(11), 713. https://doi.org/10.3390/toxins12110713
Article CAS PubMed PubMed Central Google Scholar
Park, C., Cha, H. J., Choi, E. O., Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Hong, S. H., Cheong, J., Kim, G. Y., Yun, S. J., Hwang, H. J., Kim, W. J., & Choi, Y. H. (2019). Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-mediated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells. Cancers, 11(10), 1494. https://doi.org/10.3390/cancers11101494
Article CAS PubMed PubMed Central Google Scholar
Abu-Yousif, A. O., Smith, K. A., Ge
Comments (0)