Divulging the potency of naturally derived photosensitizers in green PDT: an inclusive review Of mechanisms, advantages, and future prospects

Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., Kotowski, K., & Kulbacka, J. (2018). Photodynamic therapy—Mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

Article  CAS  Google Scholar 

Castano, A. P., Demidova, T. N., & Hamblin, M. R. (2005). Mechanisms in photodynamic therapy: Part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis and Photodynamic Therapy, 2, 1–23. https://doi.org/10.1016/S1572-1000(05)00030-X

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobson, J., de Queiroz, G. F., & Golding, J. P. (2018). Photodynamic therapy and diagnosis: Principles and comparative aspects. Veterinary Journal, 233, 8–18. https://doi.org/10.1016/j.tvjl.2017.11.012

Article  CAS  PubMed  Google Scholar 

Gonçalves, L. C. P. (2021). Photophysical properties and therapeutic use of natural photosensitizers. Journal of Photochemistry and Photobiology, 7, 100052.

Article  Google Scholar 

Sabino, C. P., Wainwright, M., Ribeiro, M. S., Sellera, F. P., Dos Anjos, C., Baptista, M. D. S., & Lincopan, N. (2020). Global priority multidrug-resistant pathogens do not resist photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 208, 111893. https://doi.org/10.1016/j.jphotobiol.2020.111893

Article  CAS  PubMed  Google Scholar 

Kvam, E., & Benner, K. (2020). Mechanistic insights into UV-A mediated bacterial disinfection via endogenous photosensitizers. Journal of Photochemistry and Photobiology B: Biology, 209, 111899. https://doi.org/10.1016/j.jphotobiol.2020.111899

Article  CAS  PubMed  Google Scholar 

Siewert, B., & Stuppner, H. (2019). The photoactivity of natural products - An overlooked potential of phytomedicines? Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 60, 152985. https://doi.org/10.1016/j.phymed.2019.152985

Article  CAS  PubMed  Google Scholar 

Gong, C., Li, Y., Gao, R., Xiao, F., Zhou, X., Wang, H., Xu, H., Wang, R., Huang, P., & Zhao, Y. (2020). Inactivation of specific spoilage organism (Pseudomonas) of sturgeon by curcumin-mediated photodynamic inactivation. Photodiagnosis and Photodynamic Therapy, 31, 101827. https://doi.org/10.1016/j.pdpdt.2020.101827

Article  CAS  PubMed  Google Scholar 

Pan, H., Wang, D., & Zhang, F. (2020). In vitro antimicrobial effect of curcumin-based photodynamic therapy on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Photodiagnosis and Photodynamic Therapy, 32, 102055. https://doi.org/10.1016/j.pdpdt.2020.102055

Article  CAS  PubMed  Google Scholar 

Paolillo, F. R., Rodrigues, P. G. S., Bagnato, V. S., Alves, F., Pires, L., & Corazza, A. V. (2021). The effect of combined curcumin-mediated photodynamic therapy and artificial skin on Staphylococcus aureus-infected wounds in rats. Lasers in Medical Science, 36(6), 1219–1226. https://doi.org/10.1007/s10103-020-03160-6

Article  PubMed  Google Scholar 

Tao, R., Zhang, F., Tang, Q. J., Xu, C. S., Ni, Z. J., & Meng, X. H. (2019). Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chemistry, 274, 415–421. https://doi.org/10.1016/j.foodchem.2018.08.042

Article  CAS  PubMed  Google Scholar 

Cardoso, D. R., Libardi, S. H., & Skibsted, L. H. (2012). Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function, 3(5), 487–502. https://doi.org/10.1039/c2fo10246c

Article  CAS  Google Scholar 

Bertel, L., Mendez-Sanchez, S. C., & Martínez-Ortega, F. (2021). Laser photo-thermal therapy of epithelial carcinoma using pterin-6-carboxylic acid conjugated gold nanoparticles. Photochemical & Photobiological Sciences, 20(12), 1599–1609. https://doi.org/10.1007/s43630-021-00122-x

Article  CAS  Google Scholar 

Hübinger, L., Runge, R., Rosenberg, T., Freudenberg, R., Kotzerke, J., & Brogsitter, C. (2022). Psoralen as a photosensitizers for photodynamic therapy by means of in vitro Cherenkov light. International Journal of Molecular Sciences, 23(23), 15233. https://doi.org/10.3390/ijms232315233

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barroso, R. A., Navarro, R., Tim, C. R., de Paula Ramos, L., de Oliveira, L. D., Araki, Â. T., Fernandes, K. G. C., Macedo, D., & Assis, L. (2021). Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: In vitro study. Lasers in Medical Science, 36(6), 1235–1240. https://doi.org/10.1007/s10103-020-03163-3

Article  PubMed  Google Scholar 

Zhang, J. N., Zhang, F., Tang, Q. J., Xu, C. S., & Meng, X. H. (2018). Effect of photodynamic inactivation of Escherichia coli by hypericin. World Journal of Microbiology & Biotechnology, 34(7), 100. https://doi.org/10.1007/s11274-018-2464-1

Article  CAS  Google Scholar 

Alam, S. T., Le, T. A. N., Park, J. S., Kwon, H. C., & Kang, K. (2019). Antimicrobial biophotonic treatment of ampicillin-resistant Pseudomonas aeruginosa with hypericin and ampicillin cotreatment followed by orange light. Pharmaceutics, 11(12), 641. https://doi.org/10.3390/pharmaceutics11120641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Theodossiou, T. A., Hothersall, J. S., De Witte, P. A., Pantos, A., & Agostinis, P. (2009). The multifaceted photocytotoxic profile of hypericin. Molecular Pharmaceutics, 6(6), 1775–1789. https://doi.org/10.1021/mp900166q

Article  CAS  PubMed  Google Scholar 

Yang, Y., Wang, C., Zhuge, Y., Zhang, J., Xu, K., Zhang, Q., Zhang, H., Chen, H., Chu, M., & Jia, C. (2019). Photodynamic antifungal activity of hypocrellin A against Candida albicans. Frontiers in Microbiology, 10, 1810. https://doi.org/10.3389/fmicb.2019.01810

Article  PubMed  PubMed Central  Google Scholar 

Wang, T., Xu, L., Shen, H., Cao, X., Wei, Q., Ghiladi, R. A., & Wang, Q. (2020). Photoinactivation of bacteria by hypocrellin-grafted bacterial cellulose. Cellulose, 27, 991–1007. https://doi.org/10.1007/s10570-019-02852-9

Article  CAS  Google Scholar 

Jiang, C., Scholle, F., Jin, F., Wei, Q., Wang, Q., & Ghiladi, R. A. (2024). Chlorophyllin as a photosensitizer in photodynamic antimicrobial materials. Cellulose, 31(4), 2475–2491. https://doi.org/10.1007/s10570-024-05758-3

Article  CAS  Google Scholar 

Lan, Y., Lu, S., Zheng, B., Tang, Z., Li, J., & Zhang, J. (2021). Combinatory effect of ALA-PDT and itraconazole treatment for Trichosporon asahii. Lasers in Surgery and Medicine, 53(5), 722–730. https://doi.org/10.1002/lsm.23343

Article  PubMed  Google Scholar 

Wang, Y., Li, J., Geng, S., Wang, X., Cui, Z., Ma, W., Yuan, M., Liu, C., & Ji, Y. (2021). Aloe-emodin-mediated antimicrobial photodynamic therapy against multidrug-resistant Acinetobacter baumannii: An in vivo study. Photodiagnosis and Photodynamic Therapy, 34, 102311. https://doi.org/10.1016/j.pdpdt.2021.102311

Article  CAS  PubMed  Google Scholar 

Wamer, W. G., Vath, P., & Falvey, D. E. (2003). In vitro studies on the photobiological properties of aloe emodin and aloin A. Free Radical Biology & Medicine, 34(2), 233–242. https://doi.org/10.1016/s0891-5849(02)01242-x

Article  CAS  Google Scholar 

Mugas, M. L., Calvo, G., Marioni, J., Céspedes, M., Martinez, F., Vanzulli, S., Sáenz, D., Di Venosa, G., Nuñez Montoya, S., & Casas, A. (2021). Photosensitization of a subcutaneous tumour by the natural anthraquinone parietin and blue light. Scientific Reports, 11(1), 23820. https://doi.org/10.1038/s41598-021-03339-z

Article  CAS  PubMed  PubMed Central  Google Scholar 

Och, A., Podgórski, R., & Nowak, R. (2020). Biological activity of berberine—a summary update. Toxins, 12(11), 713. https://doi.org/10.3390/toxins12110713

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, C., Cha, H. J., Choi, E. O., Lee, H., Hwang-Bo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Hong, S. H., Cheong, J., Kim, G. Y., Yun, S. J., Hwang, H. J., Kim, W. J., & Choi, Y. H. (2019). Isorhamnetin induces cell cycle arrest and apoptosis via reactive oxygen species-mediated AMP-activated protein kinase signaling pathway activation in human bladder cancer cells. Cancers, 11(10), 1494. https://doi.org/10.3390/cancers11101494

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abu-Yousif, A. O., Smith, K. A., Ge

Comments (0)

No login
gif