Fibrous Tissue Semantic Segmentation in CT Images of Diffuse Interstitial Lung Disease

Broască L, Trușculescu AA, Ancușa VM, Ciocârlie H, Oancea CI, Stoicescu ER, et al. A Novel Method for Lung Image Processing Using Complex Networks. Tomography. 2022 Jul;8(4):1928–1946. https://doi.org/10.3390/tomography8040162.

Soto Campos JG, Acosta Bazaga E. Manual de diagnóstico y terapéutica en neumología. 3rd ed. Majadahonda, Madrid: Ergón; 2016.

Teixeira e Silva Torres PP, Fouad Rabahi M, do Carmo Moreira MA, Luiz Escuissato D, de Souza Portes Meirelles G, Marchiori E. Importance of chest HRCT in the diagnostic evaluation of fibrosing interstitial lung diseases. Jornal Brasileiro de Pneumologia. 2021 Jun;https://doi.org/10.36416/1806-3756/e20200096.

Rodríguez García PL, Rodríguez Pupo L. Principios técnicos para realizar la anamnesis en el paciente adulto. Revista Cubana de Medicina General Integral. 1999 Aug;15(4):409–414. Publisher: 1999, Editorial Ciencias Médicas.

Dougherty G. Digital image processing for medical applications. Cambridge, UK ; New York: Cambridge University Press; 2009.

Depeursinge A, Vargas A, Platon A, Geissbuhler A, Poletti PA, Müller H. Building a reference multimedia database for interstitial lung diseases. Computerized Medical Imaging and Graphics. 2012 Apr;36(3):227–238. https://doi.org/10.1016/j.compmedimag.2011.07.003.

Cho K, Kim KD, Ham S, Yun J, Lee SM, Seo J, et al. Differential Diagnosis on Diffuse Interstitial Lung Disease by Quantifying Imaging Patterns with Multi-Tasks Deep Learning in High-Resolution Ct of the Lungs. SSRN Electronic Journal. 2022;https://doi.org/10.2139/ssrn.4058016.

Takeuchi N, Teramoto A, Imaizumi K, Saito K, Fujita H. Analysis of Idiopathic Interstitial Pneumonia in CT Images Using 3D U-Net. Medical Imaging and Information Sciences. 2021 Sep;https://doi.org/10.11318/mii.38.126.

Dice LR. Measures of the Amount of Ecologic Association Between Species. Ecology. 1945 Jul;26(3):297–302. https://doi.org/10.2307/1932409.

Anthimopoulos M, Christodoulidis S, Ebner L, Geiser T, Christe A, Mougiakakou S. Semantic Segmentation of Pathological Lung Tissue With Dilated Fully Convolutional Networks. IEEE Journal of Biomedical and Health Informatics. 2019 Mar;23(2):714–722. https://doi.org/10.1109/JBHI.2018.2818620.

Sunita Agarwala, Kumar A, Dhara AK, Thakur SB, Sadhu A, Nandi D. Special Convolutional Neural Network for Identification and Positioning of Interstitial Lung Disease Patterns in Computed Tomography Images. Pattern Recognition and Image Analysis. 2021 Oct;31(4):730–738. https://doi.org/10.1134/S1054661821040027.

Cai GW, Liu YB, Feng QJ, Liang RH, Zeng QS, Deng Y, et al. Semi-Supervised Segmentation of Interstitial Lung Disease Patterns from CT Images via Self-Training with Selective Re-Training. Bioengineering. 2023 Jul;10(7):830. https://doi.org/10.3390/bioengineering10070830.

Anthimopoulos M, Christodoulidis S, Ebner L, Christe A, Mougiakakou S. Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Transactions on Medical Imaging. 2016 May;35(5):1207–1216. https://doi.org/10.1109/TMI.2016.2535865.

Taylor L, Nitschke G. Improving Deep Learning with Generic Data Augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bangalore, India: IEEE; 2018. p. 1542–1547. Available from: https://ieeexplore.ieee.org/document/8628742/.

King G, Zeng L. Logistic Regression in Rare Events Data. Political Analysis. 2001;.

Szeliski R. Computer Vision: Algorithms and Applications. Texts in Computer Science. Cham: Springer International Publishing; 2022. Available from: https://link.springer.com/10.1007/978-3-030-34372-9.

Ronneberger O, Fischer P, Brox T.: U-Net: Convolutional Networks for Biomedical Image Segmentation. Available from: https://arxiv.org/abs/1505.04597.

Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer learning. Journal of Big Data. 2016 May;3(1):9. https://doi.org/10.1186/s40537-016-0043-6.

Simonyan K, Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. Available from: https://arxiv.org/abs/1409.1556.

He K, Zhang X, Ren S, Sun J.: Deep Residual Learning for Image Recognition. Available from: https://arxiv.org/abs/1512.03385.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z.: Rethinking the Inception Architecture for Computer Vision. Available from: https://arxiv.org/abs/1512.00567.

Kingma DP, Ba J.: Adam: A Method for Stochastic Optimization. Available from: https://arxiv.org/abs/1412.6980.

Sharma S, Sharma S, Athaiya A. Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology. 2020 May;04(12):310–316. https://doi.org/10.33564/IJEAST.2020.v04i12.054.

Yathish V.: Loss Functions and Their Use In Neural Networks. Available from: https://towardsdatascience.com/loss-functions-and-their-use-in-neural-networks-a470e703f1e9.

Rajput V.: Robustness of different loss functions and their impact on networks learning capability. Available from: https://arxiv.org/abs/2110.08322.

Jaccard P. The Distribution of the Flora in the Alpine Zone. New Phytologist. 1912 Feb;11(2):37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x.

Fadnavis S. Image Interpolation Techniques in Digital Image Processing: An Overview. International Journal Of Engineering Research and Application. 2014 Nov;4:2248–962270.

IBM Corporation.: Prueba de Kolmogorov-Smirnov para una muestra - Documentación de IBM. Available from: https://www.ibm.com/docs/es/spss-statistics/saas?topic=tests-one-sample-kolmogorov-smirnov-test.

Perktold J, Seabold S, Taylor J.: statsmodels.stats.diagnostic.lilliefors - statsmodels 0.15.0 (+575). Available from: https://www.statsmodels.org/dev/generated/statsmodels.stats.diagnostic.lilliefors.htmlhttps://www.statsmodels.orgdev/generated/statsmodels.stats.diagnostic.lilliefors.html.

Amat Rodrigo J.: Test de Wilcoxon Mann Whitney como alternativa al t-test. Available from: https://cienciadedatos.net/documentos/17_mann%E2%80%93whitney_u_test.

Bartholmai BJ, Raghunath S, Karwoski RA, Moua T, Rajagopalan S, Maldonado F, et al. Quantitative Computed Tomography Imaging of Interstitial Lung Diseases. Journal of Thoracic Imaging. 2013 Sep;28(5):298–307. https://doi.org/10.1097/RTI.0b013e3182a21969.

Murphy A. Beam hardening | Radiology Reference Article | Radiopaedia.org. Radiopaedia. 2016;https://doi.org/10.53347/rID-48590.

Chaurasia A, Culurciello E. LinkNet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP). IEEE; 2017. Available from: http://dx.doi.org/10.1109/VCIP.2017.8305148.

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S.: Feature Pyramid Networks for Object Detection. Available from: https://arxiv.org/abs/1612.03144.

Kirillov A, Girshick R, He K, Dollár P.: Panoptic Feature Pyramid Networks. Available from: https://arxiv.org/abs/1901.02446.

He K, Gkioxari G, Dollár P, Girshick R.: Mask R-CNN. Available from: https://arxiv.org/abs/1703.06870.

Comments (0)

No login
gif