FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference

Aaronson, N. L., & Hartmann, W. M. (2014). Testing, correcting, and extending the Woodworth model for interaural time difference. The Journal of the Acoustical Society of America, 135(2), 817–823. https://doi.org/10.1121/1.4861243

Article  PubMed  PubMed Central  Google Scholar 

Acerbi, L., & Ma, W. J. (2017). Practical Bayesian Optimization for Model Fitting with Bayesian Adaptive Direct Search. Advances in Neural Information Processing Systems (Vol. 30). Curran Associates, Inc

Andreopoulou, A., & Katz, B. F. G. (2017). Identification of perceptually relevant methods of inter-aural time difference estimation. The Journal of the Acoustical Society of America, 142(2), 588–598. https://doi.org/10.1121/1.4996457

Article  PubMed  Google Scholar 

Audet, C., & Dennis, J. E. (2006). Mesh Adaptive Direct Search Algorithms for Constrained Optimization. SIAM Journal on Optimization, 17(1), 188–217. https://doi.org/10.1137/040603371

Article  Google Scholar 

Barumerli, R., Majdak, P., Geronazzo, M., Meijer, D., Avanzini, F., & Baumgartner, R. (2023). A Bayesian model for human directional localization of broadband static sound sources. Acta Acustica, 7, 12. https://doi.org/10.1051/aacus/2023006

Article  Google Scholar 

Baumgartner, R., Majdak, P., & Laback, B. (2014). Modeling sound-source localization in sagittal planes for human listeners. The Journal of the Acoustical Society of America, 136(2), 791–802.

Article  PubMed  Google Scholar 

Beierholm, U., Rohe, T., Ferrari, A., Stegle, O., & Noppeney, U. (2020). Using the past to estimate sensory uncertainty. eLife, 9, e54172. https://doi.org/10.7554/eLife.54172

Berniker, M., & Kording, K. (2011). Bayesian approaches to sensory integration for motor control. Wiley Interdisciplinary Reviews: Cognitive Science, 2(4), 419–428.

PubMed  Google Scholar 

Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4). Springer

Blauert, J. (1997). Spatial hearing: the psychophysics of human sound localization. MIT press

Blauert, J. (2013). The technology of binaural listening. Springer.

Book  Google Scholar 

Carlile, S., & Leung, J. (2016). The Perception of Auditory Motion. Trends in Hearing, 20, 233121651664425. https://doi.org/10.1177/2331216516644254

Article  Google Scholar 

Charpentier, C. J., & O’Doherty, J. P. (2018). The application of computational models to social neuroscience: promises and pitfalls. Social Neuroscience, 13(6), 637–647. https://doi.org/10.1080/17470919.2018.1518834

Article  PubMed  PubMed Central  Google Scholar 

Chater, N., Oaksford, M., Hahn, U., & Heit, E. (2010). Bayesian models of cognition. WIREs Cognitive Science, 1(6), 811–823. https://doi.org/10.1002/wcs.79

Article  PubMed  Google Scholar 

Cox, M., & de Vries, B. (2021). Bayesian Pure-Tone Audiometry Through Active Learning Under Informed Priors. Frontiers in Digital Health, 3

Cox, M., Van De Laar, T., & De Vries, B. (2019). A factor graph approach to automated design of Bayesian signal processing algorithms. International Journal of Approximate Reasoning, 104, 185–204. https://doi.org/10.1016/j.ijar.2018.11.002

Article  Google Scholar 

Dau, T. (2008). Auditory processing models. Handbook of signal processing in acoustics (pp. 175–196). Springer

Daugintis, R., Barumerli, R., Picinali, L., & Geronazzo, M. (2023). Classifying Non-Individual Head-Related Transfer Functions with A Computational Auditory Model: Calibration And Metrics. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1–5). Rhodes Island, Greece: IEEE

Dietz, M., Ewert, S. D., & Hohmann, V. (2011). Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Communication, 53(5), 592–605. https://doi.org/10.1016/j.specom.2010.05.006

Article  Google Scholar 

Dietz, M., Lestang, J.-H., Majdak, P., Stern, R. M., Marquardt, T., Ewert, S. D., & Goodman, D. F. M. (2018). A framework for testing and comparing binaural models. Hearing Research, 360, 92–106. https://doi.org/10.1016/j.heares.2017.11.010

Feinkohl, A., Locke, S. M., Leung, J., & Carlile, S. (2014). The effect of velocity on auditory representational momentum. The Journal of the Acoustical Society of America, 136(1), 20–25. https://doi.org/10.1121/1.4881318

Article  Google Scholar 

Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J., Imperati, D., & Brown, S. (2011). The Speed-Accuracy Tradeoff in the Elderly Brain: A Structural Model-Based Approach. The Journal of Neuroscience, 31(47), 17242–17249. https://doi.org/10.1523/JNEUROSCI.0309-11.2011

Article  PubMed  PubMed Central  CAS  Google Scholar 

Friston, K. J. (2003). Statistical Parametric Mapping. R. Kötter (Ed.), Neuroscience Databases: A Practical Guide (pp. 237–250). Boston, MA: Springer US

Friston, K. J., Parr, T., & de Vries, B. (2017). The graphical brain: Belief propagation and active inference. Network Neuroscience, 1(4), 381–414. https://doi.org/10.1162/NETNspsasps00018

Article  PubMed  PubMed Central  Google Scholar 

Fuster, J. (2017). Prefrontal Cortex in Decision-Making: The Perception-Action Cycle. Decision Neuroscience (pp. 95–105). Elsevier.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. Chapman and Hall/CRC

Godsmark, D., & Brown, G. J. (1999). A blackboard architecture for computational auditory scene analysis. Speech Communication, 27(3), 351–366. https://doi.org/10.1016/S0167-6393(98)00082-X

Article  Google Scholar 

Haario, H., Laine, M., Mira, A., & Saksman, E. (2006). DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4), 339–354. https://doi.org/10.1007/s11222-006-9438-0

Article  Google Scholar 

Hinsen, K. (2015). Technical Debt in Computational Science. Computing in Science & Engineering, 17(6), 103–107. https://doi.org/10.1109/MCSE.2015.113

Article  Google Scholar 

Hofman, P. M., & Van Opstal, A. J. (1998). Spectro-temporal factors in two-dimensional human sound localization. The Journal of the Acoustical Society of America, 103(5), 2634–2648. https://doi.org/10.1121/1.422784

Article  PubMed  CAS  Google Scholar 

Jørgensen, S., & Dau, T. (2011). Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. The Journal of the Acoustical Society of America, 130(3), 1475–1487.

Article  PubMed  Google Scholar 

Kayser, H., Hohmann, V., Ewert, S. D., Kollmeier, B., & Anemüller, J. (2015). Robust auditory localization using probabilistic inference and coherence-based weighting of interaural cues. The Journal of the Acoustical Society of America, 138(5), 2635–2648. https://doi.org/10.1121/1.4932588

Article  PubMed  Google Scholar 

Kim, Y., & Bang, H. (2018). Introduction to Kalman Filter and Its Applications. F. Govaers (Ed.), Introduction and Implementations of the Kalman Filter. Rijeka: IntechOpen.

Klumpp, R. G., & Eady, H. R. (1956). Some Measurements of Interaural Time Difference Thresholds. The Journal of the Acoustical Society of America, 28(5), 859–860. https://doi.org/10.1121/1.1908493

Article  Google Scholar 

Knill, D. C., & Richards, W. (1996). Perception as Bayesian Inference. Cambridge University Press.

Book  Google Scholar 

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLOS ONE, 2(9), e943. https://doi.org/10.1371/journal.pone.0000943

Article  PubMed  PubMed Central  Google Scholar 

Kriegeskorte, N., & Douglas, P. K. (2018). Cognitive computational neuroscience. Nature Neuroscience, 21(9), 1148–1160. https://doi.org/10.1038/s41593-018-0210-5

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal on Optimization, 9(1), 112–147. https://doi.org/10.1137/S1052623496303470

Article  Google Scholar 

Lange, R. D., Shivkumar, S., Chattoraj, A., & Haefner, R. M. (2023). Bayesian encoding and decoding as distinct perspectives on neural coding. Nature Neuroscience, 26(12), 2063–2072. https://doi.org/10.1038/s41593-023-01458-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lavandier, M., Vicente, T., & Prud’homme, L. (2022). A series of SNR-based speech intelligibility models in the Auditory Modeling Toolbox. Acta Acustica, 6, 20. https://doi.org/10.1051/aacus/2022017

Article  Google Scholar 

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical course. Cambridge university press

Lee, S., Gold, J. I., & Kable, J. W. (2020). The human as delta-rule learner. Decision, 7(1), 55–66. https://doi.org/10.1037/dec0000112

Article  CAS  Google Scholar 

Lladó, P., Barumerli, R., Baumgartner, R., & Majdak, P. (2024). Predicting the effect of headphones on the time to localize a target in an auditory-guided visual search task. Frontiers in Virtual Reality, 5, 1359987.

Article  Google Scholar 

Llado, P., Majdak, P., Barumerli, R., & Baumgartner, R. (2024). Spectral weighting of monaural cues for auditory localization in sagittal planes. Accepted 2024/12/28: Trends in Hearing.

Lokki, T., & Grohn, M. (2005). Navigation with auditory cues in a virtual environment. IEEE MultiMedia, 12(2), 80–86. https://doi.org/10.1109/MMUL.2005.33

Article  Google Scholar 

Ma, W. J. (2012). Organizing probabilistic models of perception. Trends in Cognitive Sciences, 16(10), 511–518. https://doi.org/10.1016/j.tics.2012.08.010

Article  PubMed  Google Scholar 

Ma, W. J. (2019). Bayesian Decision Models: A Primer. Neuron, 104(1), 164–175.

Comments (0)

No login
gif