Al, E., Iliopoulos, F., Forschack, N., Nierhaus, T., Grund, M., Motyka, P., Gaebler, M., Nikulin, V. V., & Villringer, A. (2020). Heart-brain interactions shape somatosensory perception and evoked potentials. Proceedings of the National Academy of Sciences, 117(19), 10575–10584.
Amunts, K., DeFelipe, J., Pennartz, C., Destexhe, A., Migliore, M., Ryvlin, P., Furber, S., Knoll, A., Bitsch, L., Bjaalie, J. G., Ioannidis, Y., Lippert, T., Sanchez-Vives, M. V., Goebel, R., & Jirsa, V. (2022). Linking brain structure, activity, and cognitive function through computation. Eneuro, 9(2).
Bai, B., Wang, X., Li, Y., Chen, P.-C., Yu, K., Dey, K. K., Yarbro, J. M., Han, X., Lutz, B. M., Rao, S., Jiao, Y., Sifford, J. M., Han, J., Wang, M., Tan, H., Shaw, T. I., Cho, J.-H., Zhou, S., Wang, H., ... Peng, J. (2020). Deep multilayer brain proteomics identifies molecular networks in alzheimers disease progression. Neuron, 105(6), 975–991.
Candia-Rivera, D., Chavez, M., & de Vico Fallani, F. (2024). Measures of the coupling between fluctuating brain network organization and heartbeat dynamics. Network Neuroscience, 1–19.
Candia-Rivera, D., Catrambone, V., Barbieri, R., & Valenza, G. (2021). Integral pulse frequency modulation model driven by sympathovagal dynamics: Synthetic vs. real heart rate variability. Biomedical Signal Processing and Control, 68, 102736.
Catrambone, V., & Valenza, G. (2023). Nervous–system–wise functional estimation of directed brain–heart interplay through microstate occurrences. IEEE Transactions on Biomedical Engineering.
Catrambone, V., Barbieri, R., Wendt, H., Abry, P., & Valenza, G. (2021). Functional brain-heart interplay extends to the multifractal domain. Philosophical Transactions of the Royal Society A, 379(2212), 20200260.
Catrambone, V., Talebi, A., Barbieri, R., & Valenza, G. (2021). Time-resolved brain-to-heart probabilistic information transfer estimation using inhomogeneous point-process models. IEEE Transactions on Biomedical Engineering, 68(11), 3366–3374.
Corkrum, M., Covelo, A., Lines, J., Bellocchio, L., Pisansky, M., Loke, K., Quintana, R., Rothwell, P. E., Lujan, R., Marsicano, G., Martin, E. D., Thomas, M. J., Kofuji, P., & Araque, A. (2020). Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron, 105(6), 1036–1047.
Article CAS PubMed PubMed Central Google Scholar
Deng, S., Li, J., He, Q., Zhang, X., Zhu, J., Li, L., Mi, Z., Yang, X., Jiang, M., Dong, Q., Mao, Y., & Shu, Y. (2019). Regulation of recurrent inhibition by asynchronous glutamate release in neocortex. Neuron.
Destexhe, A., & Mehta, M. (2022). Properties and computational consequences of fast dendritic spikes during natural behavior. Neuroscience, 489, 251–261.
Article CAS PubMed Google Scholar
Egger, R., Narayanan, R. T., Guest, J. M., Bast, A., Udvary, D., Messore, L. F., Das, S., De Kock, C. P. J., & Oberlaender, M. (2020). Cortical output is gated by horizontally projecting neurons in the deep layers. Neuron, 105(1), 122–137.
Article CAS PubMed PubMed Central Google Scholar
Filist, S., Al-Kasasbeh, R. T., Shatalova, O. V., Btoush, M. H., Namazov, M., Shaqadan, A. A., Alshamasin, M. S., Korenevskiy, N., Aloqeili, S., & Myasnyankin, M. B. (2024). Biotechnical neural network system for predicting cardiovascular health state using processing of bio-signals. International Journal of Medical Engineering and Informatics.
Gast, R., Solla, S. A., & Kennedy, A. (2024). Neural heterogeneity controls computations in spiking neural networks. Proceedings of the National Academy of Sciences, 121(3), e2311885121.
Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S., Piasini, E., Birgiolas, J., Cannon, R. C., Cayco-Gajic, N. A., Crook, S., Davison, A. P., Dura-Bernal, S., Ecker, A., Hines, M. L., Idili, G., Lanore, F., Larson, S. D., Lytton, W. W., ... Silver, R. A. (2019). Open source brain: A collaborative resource for visualizing, analyzing, simulating, and developing standardized models of neurons and circuits. Neuron, 103(3), 395–411.
Guest, O., & Martin, A. E. (2023). On logical inference over brains, behaviour, and artificial neural networks. Computational Brain & Behavior, 6(2), 213–227.
Haberbusch, M., Frullini, S., & Moscato, F. (2021). A numerical model of the acute cardiac effects provoked by cervical vagus nerve stimulation. IEEE Transactions on Biomedical Engineering, 69(2), 613–623.
Henkes, A., Eshraghian, J. K., & Wessels, H. (2024). Spiking neural networks for nonlinear regression. Royal Society Open Science, 11(5), 231606.
Article PubMed PubMed Central Google Scholar
Hosseini, E. A., Schrimpf, M., Zhang, Y., Bowman, S., Zaslavsky, N., & Fedorenko, E. (2024). Artificial neural network language models predict human brain responses to language even after a developmentally realistic amount of training. Neurobiology of Language, 5(1), 43–63.
Article PubMed PubMed Central Google Scholar
Hsieh, Y.-T., Anjum, K., & Pompili, D. (2024). Ultra-low power analog folded neural network for cardiovascular health monitoring. IEEE Journal of Biomedical and Health Informatics.
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.
Article CAS PubMed Google Scholar
Kim, R., & Sejnowski, T. J. (2021). Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nature Neuroscience, 24(1), 129–139.
Article CAS PubMed Google Scholar
Li, Y., Song, B., & Zeng, X. (2023). Spiking neural p systems with weights and delays on synapses. Theoretical Computer Science, 114028.
Li, Q., Sorscher, B., & Sompolinsky, H. (2024). Representations and generalization in artificial and brain neural networks. Proceedings of the National Academy of Sciences, 121(27), e2311805121.
Liu, X., Zhao, Y., & Wang, L. (2023). Nonlinear neural-like p model for time series classification. Theoretical Computer Science, 114055.
Livneh, Y., Sugden, A. U., Madara, J. C., Essner, R. A., Flores, V. I., Sugden, L. A., Resch, J. M., Lowell, B. B., & Andermann, M. L. (2020). Estimation of current and future physiological states in insular cortex. Neuron, 105(6), 1094–1111.
Article CAS PubMed PubMed Central Google Scholar
Lombardi, F., Pepić, S., Shriki, O., Tkačik, G., & De Martino, D. (2023). Statistical modeling of adaptive neural networks explains co-existence of avalanches and oscillations in resting human brain. Nature Computational Science, 3(3), 254–263.
Article PubMed PubMed Central Google Scholar
Lucas, S., & Portillo, E. (2024). Methodology based on spiking neural networks for univariate time-series forecasting. Neural Networks, 173, 106171.
Malandrone, F., Catrambone, V., Carletto, S., Rossini, P. G., Coletti Moja, M., Oliva, F., Pagani, M., Valenza, G., & Ostacoli, L. (2024). Restoring bottom-up communication in brain-heart interplay after trauma-focused psychotherapy in breast cancer patients with post-traumatic stress disorder. Journal of Affective Disorders, 351, 143–150.
Article CAS PubMed Google Scholar
Mark, J. A., Curtin, A., Kraft, A. E., Ziegler, M. D., & Ayaz, H. (2024). Mental workload assessment by monitoring brain, heart, and eye with six biomedical modalities during six cognitive tasks. Frontiers in neuroergonomics, 5, 1345507.
Article PubMed PubMed Central Google Scholar
Mehmood, A., & Iqbal, M. J. (2024). Hybrid spiking neural networks for anomaly detection of brain, heart and pancreas. Arabian Journal for Science and Engineering, 1–11.
Mehmood, A., & Iqbal, M. J. (2023). Hybrid excitable spiking neural network for cardiovascular disease prediction. IEEE Access, 11, 128187–128197.
Najafi, F., Elsayed, G. F., Cao, R., Pnevmatikakis, E., Latham, P. E., Cunningham, J. P., & Churchland, A. K. (2020). Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning. Neuron, 105(1), 165–179.
Article CAS PubMed Google Scholar
Pagkalos, M., Chavlis, S., & Poirazi, P. (2023). Introducing the dendrify framework for incorporating dendrites to spiking neural networks. Nature Communications, 14(1), 131.
Article CAS PubMed PubMed Central Google Scholar
Paudel, R., Jafri, M. S., & Ullah, A. (2023). Pacing dynamics determines the arrhythmogenic mechanism of the cpvt2-causing casq2g112+ 5x mutation in a guinea pig ventricular myocyte computational model. Genes, 14(1), 23.
Pegolotti, L., Pfaller, M. R., Rubio, N. L., Ding, K., Brugarolas Brufau, R., Darve, E., & Marsden, A. L. (2024). Learning reduced-order models for cardiovascular simulations with graph neural networks. Computers in Biology and Medicine, 168, 107676.
Roussarie, J.-P., Yao, V., Rodriguez-Rodriguez, P., Oughtred, R., Rust, J., Plautz, Z., Kasturia, S., Albornoz, C., Wang, W., Schmidt, E. F., Dannenfelser, R., Tadych, A., Brichta, L., Barnea-Cramer, A., Heintz, N., Hof, P. R., Heiman, M., Dolinski, K., Flajolet, M., ... Greengard, P. (2020). Selective neuronal vulnerability in alzheimer disease: A network-based analysis. Neuron, 107(5), 821–835.
Seibertz, F., Rapedius, M., Fakuade, F. E., Tomsits, P., Liutkute, A., Cyganek, L., Becker, N., Majumder, R., Clauß, S., Fertig, N., et al. (2022). A modern automated patch-clamp approach for high throughput electrophysiology recordings in native cardiomyocytes. Communications biology, 5(1), 1–10.
Shaban, A., Bezugam, S. S., & Suri, M. (2021). An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation. Nature Communications, 12(1), 4234.
Article CAS PubMed PubMed Central Google Scholar
Shao, F., & Shen, Z. (2023). How can artificial neural networks approximate the brain? Frontiers in Psychology, 13, 970214.
Article PubMed PubMed Central Google Scholar
Singh, N., Gunjan, V. K., Shaik, F., & Roy, S. (2024). Detection of cardio vascular abnormalities using gradient descent optimization and cnn. Health and Technology, 14(1), 155–168.
Subramoney, A., Bellec, G., Scherr, F., Legenstein, R., & Maass, W. (2024). Fast learning without synaptic plasticity in spiking neural networks. Scientific Reports, 14(1), 8557.
Sutanto, H. (2024). Transforming clinical cardiology through neural networks and deep learning: A guide for clinicians. Current Problems in Cardiology, 102454.
Turab, A., Sintunavarat, W., Ullah, F., Zaidi, S. A., Montoyo, A., & Nescolarde-Selva, J.-A. (2024). Computational modelling of animal behaviour in t-mazes: Insights from machine learning. Ecological Informatics, 81, 102639.
Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., & Kumar, R. (2018). Ecg signal preprocessing and svm classifier-based abnormality detection in remote healthcare applications. IEEE Access, 6, 9767–9773.
Comments (0)