Horne JP, Flannery R, Usman S (2014) Adolescent idiopathic scoliosis: diagnosis and management. American Family Physician [Internet] 1;89:193–8
Weinstein SL, Dolan LA, Cheng JC, Danielsson A, Morcuende JA (2008) Adolescent idiopathic scoliosis. Lancet May; 371:1527–1537
Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg Am 66:1061–1071
Article CAS PubMed Google Scholar
Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 15:20:1399–1405
Crostelli M, Mazza O, Mariani M (2012) Free-hand pedicle screws insertion technique in the treatment of 120 consecutive scoliosis cases operated without use of intraoperative neurophysiological monitoring. European Spine J 13;21(S1):43–9
Crostelli M, Mazza O, Mariani M, Mascello D (2013) Treatment of severe scoliosis with posterior-only approach arthrodesis and all-pedicle screw instrumentation. Eur Spine J 24(S6):808–814
Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD (2004) Free Hand Pedicle Screw Placement in the Thoracic Spine: Is it Safe? Spine 29:333–42
Huang M, Tetreault TA, Vaishnav A, York PJ, Staub BN (2021) The current state of navigation in robotic spine surgery. Annals Translational Med 9:86–86
Laudato PA, Pierzchala K, Schizas C (2018) Pedicle screw insertion accuracy using O-Arm, robotic Guidance, or freehand technique. Spine 43:E373–E378
Venkat Boddapati, Lombardi JM, Hikari Urakawa, Lehman RA (2021) Intraoperative image guidance for the surgical treatment of adult spinal deformity. Annals Translational Med 1:9:91–91
Smith JS, Shaffrey CI, Ames CP, Lenke LG (2019) Treatment of adult thoracolumbar spinal deformity: past, present, and future. J Neurosurgery: Spine 30:551–567
Sembrano JN, Polly DW, Ledonio CGT, Santos ERG (2012) Intraoperative 3-dimensional imaging (O-arm) for assessment of pedicle screw position: does it prevent unacceptable screw placement? Int J Spine Surg 6:49–54
Article PubMed PubMed Central Google Scholar
Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C et al (2015) The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Annals of Internal Medicine [Internet] 2;162:777
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ et al (eds) (2019) Cochrane Handbook for Systematic Reviews of Interventions [Internet]. Wiley; Available from: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119536604
Gertzbein SD, Robbins SE (1990) Accuracy of Pedicular Screw Placement in vivo. Spine 15:11–14
Article CAS PubMed Google Scholar
Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M et al (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919
Article PubMed PubMed Central Google Scholar
McGuinness LA, Higgins JPT (2020) Risk-of‐bias VISualization (robvis): An R package and Shiny web app for visualizing risk‐of‐bias assessments. Research Synthesis Methods 6;12(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32336025/
Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J et al (2011) GRADE guidelines: 1. Introduction—GRADE evidence profiles and Summary of findings tables. J Clin Epidemiol 64:383–394
Gert van Valkenhoef, Dias S, Ades AE, Welton NJ (2016) Automated generation of node-splitting models for assessment of inconsistency in network meta‐analysis. Res Synthesis Methods 3:7:80–93
CRAN: Package gemtc. Doiorg [Internet] (2015); Available from: https://doi.org/10.32614/CRAN.package.gemtc
Plummer M, Stukalov A, Denwood M (2023) rjags: Bayesian Graphical Models using MCMC [Internet]. R-Packages. Available from: https://cran.r-project.org/package=rjags
Harrer M, Pim Cuijpers ED (2019) Doing Meta-Analysis in R
Output Analysis and Diagnostics for MCMC [R package coda version 0.19–4.1]. Doiorg [Internet] (2024); Available from: https://doi.org/10.32614/CRAN.package.coda
Phillippo DM (2024) Bayesian Network Meta-Analysis of Individual and Aggregate Data [R package multinma version 0.7.2]. Doiorg [Internet].; Available from: https://doi.org/10.32614/CRAN.package.multinma
Schwarzer G (2024) General Package for Meta-Analysis [R package meta version 8.0–1]. Doiorg [Internet]; Available from: https://doi.org/10.32614/CRAN.package.meta
Matur AV, Palmisciano P, Duah HO, Chilakapati S, Cheng JS, Adogwa O (2022) Robotic and navigated pedicle screws are safer and more accurate than fluoroscopic freehand screws: a systematic review and meta-analysis 1;23:197–208
Linden GS, Ghessese S, Cook D, Hedequist DJ (2022)Pedicle Screw Placement in Adolescent Idiopathic Scoliosis: A Comparison between Robotics Coupled with Navigation versus the Freehand Technique. Sensors 12;22:5204
Lieberman IH, Kisinde S, Hesselbacher S (2020) Robotic-assisted pedicle screw Placement during spine surgery. JBJS Essent Surg Techniques 10:e0020–e0020
Hu X, Ohnmeiss DD, Lieberman IH (2012) Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J 14:22:661–666
Akazawa T, Torii Y, Ueno J, Umehara T, Iinuma M, Yoshida A et al (2022) Accuracy of computer-assisted pedicle screw placement for adolescent idiopathic scoliosis: a comparison between robotics and navigation. Eur Spine J 26:32:651–658
Baky FJ, Milbrandt T, Echternacht S, Stans AA, Shaughnessy WJ, Larson AN (2019) Intraoperative Computed Tomography–Guided Navigation for Pediatric Spine Patients Reduced Return to Operating Room for Screw Malposition Compared With Freehand/Fluoroscopic Techniques. Spine Deformity 12;7:577–81
Chen H, Zhu X, Dong L, Liu T (2021) [Study on robot-assisted pedicle screw implantation in adolescent idiopathic scoliosis surgery]. CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY. Nov 15:35:1457–1462
Chen YS, Lin YH, Wu YC, Shih CM, Chen KH, Lee CH et al (2024) Radiographic and clinical outcomes of robot-assisted pedicle screw instrumentation for adolescent idiopathic scoliosis. Front Surg 22:11.
Hou C, Yang H, Chen Y, Yang Y, Zhang B, Chen K et al (2023) Comparison of robot versus fluoroscopy-assisted pedicle screw instrumentation in adolescent idiopathic scoliosis surgery: a retrospective study. Front Surg 23:9.
Kokushin DN, Belyanchikov SM, Murashko VV, Kartavenko KA, Khusainov NO (2017) Comparative analysis of the accuracy of pedicle screws insertion in surgical treatment of children with idiopathic scoliosis. Russian J Spine Surg (Khirurgiya Pozvonochnika) 1(14):8–17
Liu Z, Jin M, Qiu Y, Yan H, Han X, Zhu Z (2016) The superiority of intraoperative O-arm Navigation-assisted surgery in Instrumenting extremely small thoracic pedicles of adolescent idiopathic scoliosis. Medicine 95:e3581
Article CAS PubMed PubMed Central Google Scholar
Ughwanogho E, Patel NM, Baldwin KD, Sampson NR, Flynn JM (2012) Computed tomography–guided Navigation of thoracic pedicle screws for adolescent idiopathic scoliosis results in more Accurate Placement and less screw removal. Spine 15:37:E473–E478
Xiaoming X (2023) Application of orthopedic robot-assisted screw placement in the correction of adolescent idiopathic scoliosis. Chin J Tissue Eng Res 27(36):5790
Zhenglin C, Tianhang X, Miao Y (2021) Clinical Application of TIANJI Orthopedic Surgical Robot in Patients Treated by Adolescent Idiopathic Scoliosis Surgery. Medical Equipment [Internet]. 34(17). Available from: https://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_ylzb202117002
Sakai Y, Matsuyama Y, Nakamura H, Katayama Y, Imagama S, Ito Z et al (2008) Segmental pedicle screwing for idiopathic scoliosis using computer-assisted surgery. J Spin Disord Tech 21(3):181–186
Naureen Keric, Doenitz C, Haj A, Izabela Rachwal-Czyzewicz M, Renovanz D et al (2017) Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws. NeuroSurg Focus 42(5):E11–E11
Tian W, Liu Y, Liu B, He D, Wu J, Han X et al (2019) Guideline for Thoracolumbar Pedicle Screw Placement assisted by Orthopaedic Surgical Robot. Orthop Surg 11(2):153–159
Article PubMed PubMed Central Google Scholar
Vaccaro AR, Hussain M, Harris J, Crawford N, Chang V, Passias PG et al (2017) In Vitro Analysis of Accuracy, Dosage and Surgical Time required for Pedicle Screw Placement using Conventional Percutaneous Screw and robotic-assisted screw techniques. Spine J 17(10):S261
Fan Y, Du J, Zhang J, Liu S, Xue X, Huang Y et al (2017) Comparison of accuracy of pedicle screw insertion among 4 guided technologies in spine surgery. Med Sci Monit 23:5960–5968
Article PubMed PubMed Central Google Scholar
Ezeokoli E, Pfennig M, John J, Gupta R, Khalil JG, Park DK (2022) Index surgery cost of fluoroscopic freehand Versus robotic-assisted Pedicle Screw Placement in lumbar instrumentation: an age, sex, and Approach-Matched Cohort comparison. J Am Acad Orthop Surg Global Res Reviews.;6(12)
Garcia D, Akinduro OO, De Biase G, Sousa-Pinto B, Jerreld DJ, Dholakia R et al Robotic-Assisted vs Nonrobotic-Assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Cost-Utility Analysis. Neurosurgery [Internet]. 2022 Feb 1 [cited 2022 Dec 19] 90(2):192. Available from: https://journals.lww.com/neurosurgery/Fulltext/2022/02000/Robotic_Assisted_vs_Nonrobotic_Assisted_Minimally.6.aspx
Passias PG, Brown AE, Alas H, Bortz CA, Pierce KE, Hassanzadeh H et al (2021) A cost benefit analysis of increasing surgical technology in lumbar spine fusion. Spine J 21(2):193–201
Givens GH, Smith DD, Tweedie RL (1997) Publication bias in meta-analysis: a bayesian data-augmentation approach to account for issues exemplified in the passive smoking debate. Stat Sci.;12(4)
Comments (0)