The Complete Chloroplast Genome of

El Asri, O., Ramdani, M., Latrach, L., et al, Comparison of energy recovery after anaerobic digestion of three Marchica lagoon algae (Caulerpa prolifera, Colpomenia sinuosa, Gracilaria bursa-pastoris), Sustainable Mat. Technol., 2017, vol. 11, pp. 47—52.

Article  CAS  Google Scholar 

Cherry, P., O’Hara, C., Magee, P.J., et al, Risks and benefits of consuming edible seaweeds, Nutr. Rev., 2019, vol. 77, pp. 307—329.

Article  PubMed  PubMed Central  Google Scholar 

Cotton, A.D, The appearance of Colpomenia sinuosa in Britain, Bull. Misc. Inf., R. Bot. Gard., 1908, vol. 1908, no. 2, pp. 73—77.

Google Scholar 

Gyi, K.K. and Htun, S., The morphotaxonomy and phytogeographical distribution of Colpomenia sinuosa (Mertens ex Roth) Derbes and Solier (Scytosiphonales, Phaeophyta) from Myanmar, Univ. Res. J., 2012, vol. 5, pp. 1—21.

Google Scholar 

Norziah, M.H. and Ching, C.Y., Nutritional composition of edible seaweed Gracilaria changii, Food Chem., 2000, vol. 68, no. 1, pp. 69—76.

Article  CAS  Google Scholar 

Dawczynski, C., Schubert, R., and Jahreis, G., Amino acids, fatty acids, and dietary fibre in edible seaweed products, Food Chem., 2007, vol. 103, no. 3, pp. 891—899.

Article  CAS  Google Scholar 

Kanias, G.D., Skaltsa, H., Tsitsa, E., et al., Study of the correlation between trace elements, sterols and fatty acids in brown algae from the Saronikos Gulf of Greece, Fresenius’ J. Anal. Chem., 1992, vol. 344, pp. 334—339.

Article  CAS  Google Scholar 

Hussain, M.M., National, R.C., Abdel-Aziz, A., et al, Chemical composition of Colpomenia sinuosa as influenced by seasonal variation, Pak. J. Sci. Ind. Res., 1983, vol. 26, pp. 152—154.

Google Scholar 

Rostami, Z., Tabarsa, M., You, S., et al., Structural characterization and RAW264.7 murine macrophage stimulating activity of a fucogalactoglucan from Colpomenia peregrina, J. Food Sci. Technol., 2018, vol. 55, pp. 4650—4660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muscle, R.C., Edgar, multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792—1797.

Article  Google Scholar 

Gascuel, O., New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol., 2010, vol. 59, no. 3, pp. 307—321.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif