Whole Sequence Analysis of Gene to Unravel the Genetic Diversity and Phylogenetic Structure of the Domestic and Wild Sheep

Shahbazi, M., The website of the Department of Environment (DOE), Tehran. http://www.doe.ir.

Khodabakhshzadeh, R., Mohammadabadi, M.R., Esmailizadeh, A.K., et al., Identification of point mutations in exon 2 of GDF9 gene in Kermani sheep, Pol. J. Vet. Sci., 2016, no. 19, pp. 281—289.

Freeland, J., Molecular Ecology, Translation: M. Malikian, Mashhad: Mashhad Academic Jihad Publications, 2010.

Wilaiams, S.L., Brawn, J.D., and Paige, K.N., Landscape scale genetic effects of habitat fragmentation on a high gene flow species Speyria idalia (Nymphalidae), Mol. Ecol., 2003, no. 12, pp. 11—20.

Ziaie, H., A Field Guide to the Mammals of Iran, Tehran: Center for Familiarity with Wildlife, 2009.

Google Scholar 

Javanroh Ali Abad, A., Genetic diversity evaluation of six native Iranian goat lumps using RAPD marker, Master’s Degree Dissertation, Tehran: Tehran University, 2002.

Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.

Book  Google Scholar 

Freeland, J.R., Molecular Ecology, Chichester, England: Wiley, 2005.

Google Scholar 

Allendorf, F.W., and Luikart, G., Conservation and the genetics of populations, Mammalia, 2007, pp. 189—197.

Hall, B.G., Phylogenetic Trees Made Easy: A How-To Manual, Bellingham Research Institute, 2008.

Google Scholar 

Guo, J., Du, L.X., Ma, Y.H., et al., A novel maternal lineage revealed in sheep (Ovis aries), Anim. Genet., 2005, no. 36, pp. 331—336.

Lv, F.H., Peng, W.F., Yang, J., et al., Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep, Mol. Biol. Evol., 2015, no. 32, pp. 2515—2533.

Zhao, Y.X., Yang, J., Lv, F.H., et al., Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early pastoralism in East Asia, Mol. Biol. Evol., 2017, no. 34, pp. 2380—2395.

Wang, K., Li, M., and Hakonarson, H., ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data, Nucleic Acids Res., 2010, vol. 38, no. 16, p. e164.

Article  PubMed  PubMed Central  Google Scholar 

Demirci, S., Bastanlar, E.K., Dilsad Dagtas, N., et al., Mitochondrial DNA diversity of modern, ancient and wild sheep (Ovis gmelinii anatolica) from Turkey: new insights on the evolutionary history of sheep, PLoS One, 2013, vol. 8, no. 12, p. e81952.

Article  PubMed  PubMed Central  Google Scholar 

Yuan, Z., Li, J., Zang, L., et al., Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle, Gene, 2012, no. 505, pp. 190—194.

Teng, L.S., Zheng, Y., and Wang, H.H., BRCA1/2 associated hereditary breast cancer, J. Zhejiang Univ. Sci., 2008, vol. 9, no. 2, pp. 85—89.

Article  CAS  Google Scholar 

Malone, K.E., Dalling, J.R., Thompson, J.D., et al., BRCA1 mutation and breast cancer in the general population: analyses in women before age 35 years and in women before age 45 years with first-degree family history, JAMA, 1998, no. 297, pp. 922—929.

Hall, J.M., Lee, M.K., Newman, B., et al., Linkage of early onset familial breast cancer to chromosome 17q21, Science, 1990, no. 250, pp. 1684—1689.

Scully, R. and Livingston, D.M., In search of the tumour-suppressor functions of BRCA1 and BRCA2, Nature, 2000, vol. 408, no. 6811, pp. 429—432.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osborne, C., Wilson, P., and Tripathy, D., Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications, Oncologist, 2004, vol. 9, no. 4, pp. 361—377.

Article  CAS  PubMed  Google Scholar 

Tapia, T., Smalley, S.V., Kohen, P., et al., Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors, Epigenetics, 2008, vol. 3 no. 1, pp. 157—163.

Article  PubMed  Google Scholar 

Claire, M.P., Benjamin, N.H., and Singh Amareshwar, T.K., The evolution, functions and applications of the breast cancer genes BRCA1 and BRCA2, Cancer Genomics Proteomics, 2017, no. 14, pp. 293—298.

Carlen, E., Strandberg, E., and Roth, A., Genetic parameters for clinical mastitis, somatic cell score and production in the first three lactations of Swedish Holstein cows, J. Dairy Sci., 2004, vol. 87, no. 9, pp. 3062—3070.

Article  CAS  PubMed  Google Scholar 

Gifford-Gonzalez, D. and Hanotte, O., Domesticating animals in Africa: implications of genetic and archaeological findings, J. World Prehist., 2011, no. 24, pp. 1—23.

Ciani, E., Mastrangelo, S., Silva, A.D., et al., On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population‑genetic analysis tools, Genet. Sel. Evol., 2020, vol. 52, no. 25.

Tamura, K., Stecher, G., and Kumar, S., MEGA11: molecular evolutionary genetics analysis version 11, Mol. Biol. Evol., 2021, vol. 38, no. 7, pp. 3022—3027. https://doi.org/10.1093/molbev/msab120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Librado, P. and Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data, Bioinformatics, 2009, vol. 25, pp. 1451—1452. https://doi.org/10.1093/bioinformatics/btp187

Article  CAS  PubMed  Google Scholar 

Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics, 1989, vol. 123, pp. 585—595. https://doi.org/10.1093/genetics/123.3.585

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirikci, K., Noce, A., Cam, M.A., et al., The analysis of mitochondrial data indicates the existence of population substructure in Karayaka sheep, Small Ruminant Res., 2018, no. 162, pp. 25—29.

Missohou, A., Kaboré, B., Flori, L., et al., Analysis of the genetic diversity and population structure of four Senegalese sheep breeds using medium-density single-nucleotide polymorphisms, Animals, 2022, vol. 12, no. 12, p. 1512.

Article  PubMed  PubMed Central  Google Scholar 

Argun Karsli, B., Demir, E., Goktug Fidan, H., and Karsli, T., Assessment of genetic diversity and differentiation among four indigenous Turkish sheep breeds using microsatellites, Arch. Anim. Breed., 2020, no. 63, pp. 165—172.

Muigai, A.W. and Hanotte, O., The origin of African sheep: archaeological and genetic perspectives, Afr. Archaeol. Rev., 2013, no. 30, pp. 39—50.

Pereira, F., Queirós, S., Gusmão, L., et al., Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa, Mol. Biol. Evol., 2009, no. 26, pp. 2765— 2773.

Abdelkader, A.A., Yilmaz, O., Ata, N., et al., Assessment of genetic diversity of Turkish and Algerian native sheep breeds, Acta Agric. Slov., 2020, vol. 115, no. 1, pp. 5—14.

Article  Google Scholar 

Abied, A., Bagadi, A., and Bordbar, F., Genomic diversity, population structure, and signature of selection in five Chinese native sheep breeds adapted to extreme environments, Genes, 2020, vol. 11, no. 494.

Kandoussi, A., Badaoui, B., Boujenane, I., et al., How have sheep breeds differentiated from each other in Morocco? Genetic structure and geographical distribution patterns, Genet. Sel. Evol., 2021, vol. 53, no. 83.

Moioli, B., Napolitano, F., Orrù, L., and Catillo, G., Analysis of the genetic diversity between Gentile di Puglia, Sopravissana and Sarda sheep breeds using microsatellite markers, Ital. J. Anim. Sci., 2006, no. 5, pp. 73—78.

Liu, J., Lu, Z., Yuan, Ch., et al., Phylogeography and phylogenetic evolution in Tibetan Sheep based on MT-CYB sequences, Animals, 2020, vol. 10, no. 7, p. 1177.

Article  PubMed  PubMed Central  Google Scholar 

Singh, S., Kumar, S., Jr., Kolte, A.P., and Kumar, S., Extensive variation and sub-structuring in lineage a mtDNA in Indian sheep: genetic evidence for domestication of sheep in India, PLoS One, 2013, vol. 8, no. 11.

Oner, Y., Calvo, J.H., and Elmaci, C., Investigation of the genetic diversity among native Turkish sheep breeds using mtDNA polymorphisms, Trop. Anim. Health Prod., 2013, no. 45, pp. 947—951.

Deniskova, T.E., Dotsev, A.V., Selionova, M.I., et al., Population structure and genetic diversity of 25 Russian sheep breeds based on whole‑genome genotyping, Genet. Sel. Evol., 2018, vol. 50, no. 29.

Comments (0)

No login
gif