Il’in, L.A., Meditsinskie aspekty protivodeistviya radiologicheskomu i yadernomu terrorizmu (Medical Aspects of Combating Radiological and Nuclear Terrorism), Moscow: Nauka, 2018.
Ushakov, I.B., Kosmos, radiatsiya, chelovek (Space, Radiation, Man), Moscow: Nauchtekhlitizdat, 2021.
Dogru, S., Taysi, S., and Yucel, A., Effect soft thymoquinone in the lungs of rats against radiation-induced oxidative stress, Eur. Rev. Med. Pharmacol. Sci., 2024, vol. 28, no. 1, pp. 191—198. https://doi.org/10.26355/eurrev_202401_34904
Article CAS PubMed Google Scholar
Mikhailov, V.F. and Zasukhina, G.D., A new approach to the stimulation of the body’s defense systems with low radiation doses, Biol. Bull. Rev., 2020, vol. 10, no. 6, pp. 475—482. https://doi.org/10.1134/S2079086420060031
Altay, H., Demir, E., Binici, H., et al., Radioprotective effects of propolis and caffeic acid phenethyl ester on the tong-tissues, Eur. J. Theor., 2020, vol. 26, pp. 202—207. https://doi.org/10.5152/eurjther.2020.19047
Taysi, S., Algburi, F., Mohammed, Z., et al., Thymoquinone: a review on its pharmacological importance and its association with oxidative stress, COVID 19 and radiotherapy, Mini Rev. Med. Chem., 2022, vol. 22, no. 14, pp. 1874—1875. https://doi.org/10.2174/1389557522666220104151225
Sadeghi, E., Inenshahidi, M., and Hosseinzadeh, H., Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review, Mol. Biol. Rep., 2023, vol. 50, pp. 5439—5454. https://doi.org/10.1007/s11033-023-08363-y
Article CAS PubMed Google Scholar
Tiwari, G., Cupta, M., Devhare, L., and Tiwari, R., Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa, Curr. Drug Res. Rev., 2023. https://doi.org/10.2174/2589977515666230811092410
Demir, E., Taysi, S., Ulisal, H., et al., Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation, Int. J. Radiat. Biol., 2020, vol. 96, no. 2, pp. 228—235. https://doi.org/10.1080/09553002.2020.1683636
Article CAS PubMed Google Scholar
Akyuz, M., Taysi, S., Baysal, E., et al., Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation, Head Neck, 2017, vol. 39, no. 10, pp. 2027—2035. https://doi.org/10.1002/hed.24861
Koc, M., Deniz, C., Eryilmaz, M., et al., Radioprotective effects of melatonin and thymoquinone on liver, parotid gland, brain, and testis of rats exposed to total body irradiation, Turk. J. Med. Sci., 2023, vol. 53, pp. 902—908. https://doi.org/10.55730/1300-0144.5654
Article CAS PubMed PubMed Central Google Scholar
Ahmed, S. and Bakz, M., Will Nigella sativa oil protect parotid glands of rats against cranium gamma radiation? Histological and immunohistochemical evaluation, BMC Complement Med. Ther., 2024, vol. 24, p. 111. https://doi.org/10.1186/s12906-024-04410-8
Article CAS PubMed PubMed Central Google Scholar
Abdullaev, S., Gubina, N., Bulanova, T., et al., Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1196. https://doi.org/10.3390/ijms21041196
Article CAS PubMed PubMed Central Google Scholar
Abdullaev, S.A., Glukhov, S.I., and Gaziev, A.I., Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity, Antioxidants (Basel), 2021, vol. 10. https://doi.org/10.3390/antiox10121885
Gaziev, A.I., Ways to maintain the integrity of mitochondrial DNA and mitochondrial function in cells exposed to ionizing radiation, Radiats. Biol. Radioekol., 2013, vol. 53, no. 2, pp. 117—136.
Mikhailov, V.F., Saleeva, D.V., Rozhdestvensky, L.M., et al., Activity of genes and noncoding RNAs as an approach to determination of early biomarkers of radiation-induced cancer in mice, Russ. J. Genet., 2021, vol. 57, no. 10, pp. 1140—1148. https://doi.org/10.1134/S1022795421100070
Long, G., Chen, H., Wu, M., et al., Antianemia drug roxadustat (FG-4592) protects against doxorubicin-induced cardiotoxicity by targeting antiapoptotic and antioxidative pathways, Front. Pharmacol., 2020, vol. 11. https://doi.org/10.3389/fphar.2020.01191
Wang, H., Yu, W., Wang, Y., et al., P53 contributes to cardiovascular diseases via mitochondria dysfunction: a new paradigm, Free Radic. Biol. Med., 2023, vol. 208, pp. 846—858. https://doi.org/10.1016/j.freeradbiomed.2023.09.036
Article CAS PubMed Google Scholar
Alsanosi, S., Sheikh, R., Sonbul, S., et al., The potential role of Nigella sativa seed oil as epigenetic therapy of cancer, Molecules, 2022, vol. 27. https://doi.org/10.3390/molecules27092779
Kaleem, M., Kayali, A., Sheikh, R.A., et al., In vitro and in vivo preventive effects of thymoquinone against breast cancer-role of DNMT1, Molecules (Basel), 2024, vol. 29, no. 2, p. 434. https://doi.org/10.3390/molecules29020434
Article CAS PubMed PubMed Central Google Scholar
Saleeva, D.V., Raeva, N.F., Abdullaev, S.A., et al., Preventive and therapeutic potential of thymoquinone for a number of human pathologies based on determining the activation of cellular components that perform protective functions through the activity of genes and non-coding RNAs, Gosp. Med.: Nauka Prakt., 2023, vol. 6, no. 2, pp. 27—36. https://doi.org/10.34852/GM3CVKG.2023.75.38.015
Comments (0)