Mechanisms of Modulating Action of Thymoquinone (Component of Black Cumin, ), Affecting the Activity of Some Nuclear and Mitochondrial Genes in Mice Tissue after Exposure to X-ray Radiation

Il’in, L.A., Meditsinskie aspekty protivodeistviya radiologicheskomu i yadernomu terrorizmu (Medical Aspects of Combating Radiological and Nuclear Terrorism), Moscow: Nauka, 2018.

Ushakov, I.B., Kosmos, radiatsiya, chelovek (Space, Radiation, Man), Moscow: Nauchtekhlitizdat, 2021.

Dogru, S., Taysi, S., and Yucel, A., Effect soft thymoquinone in the lungs of rats against radiation-induced oxidative stress, Eur. Rev. Med. Pharmacol. Sci., 2024, vol. 28, no. 1, pp. 191—198. https://doi.org/10.26355/eurrev_202401_34904

Article  CAS  PubMed  Google Scholar 

Mikhailov, V.F. and Zasukhina, G.D., A new approach to the stimulation of the body’s defense systems with low radiation doses, Biol. Bull. Rev., 2020, vol. 10, no. 6, pp. 475—482. https://doi.org/10.1134/S2079086420060031

Article  Google Scholar 

Altay, H., Demir, E., Binici, H., et al., Radioprotective effects of propolis and caffeic acid phenethyl ester on the tong-tissues, Eur. J. Theor., 2020, vol. 26, pp. 202—207. https://doi.org/10.5152/eurjther.2020.19047

Article  Google Scholar 

Taysi, S., Algburi, F., Mohammed, Z., et al., Thymoquinone: a review on its pharmacological importance and its association with oxidative stress, COVID 19 and radiotherapy, Mini Rev. Med. Chem., 2022, vol. 22, no. 14, pp. 1874—1875. https://doi.org/10.2174/1389557522666220104151225

Article  CAS  Google Scholar 

Sadeghi, E., Inenshahidi, M., and Hosseinzadeh, H., Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review, Mol. Biol. Rep., 2023, vol. 50, pp. 5439—5454. https://doi.org/10.1007/s11033-023-08363-y

Article  CAS  PubMed  Google Scholar 

Tiwari, G., Cupta, M., Devhare, L., and Tiwari, R., Therapeutic and phytochemical properties of thymoquinone derived from Nigella sativa, Curr. Drug Res. Rev., 2023. https://doi.org/10.2174/2589977515666230811092410

Book  Google Scholar 

Demir, E., Taysi, S., Ulisal, H., et al., Nigella sativa oil and thymoquinone reduce oxidative stress in the brain tissue of rats exposed to total head irradiation, Int. J. Radiat. Biol., 2020, vol. 96, no. 2, pp. 228—235. https://doi.org/10.1080/09553002.2020.1683636

Article  CAS  PubMed  Google Scholar 

Akyuz, M., Taysi, S., Baysal, E., et al., Radioprotective effect of thymoquinone on salivary gland of rats exposed to total cranial irradiation, Head Neck, 2017, vol. 39, no. 10, pp. 2027—2035. https://doi.org/10.1002/hed.24861

Article  PubMed  Google Scholar 

Koc, M., Deniz, C., Eryilmaz, M., et al., Radioprotective effects of melatonin and thymoquinone on liver, parotid gland, brain, and testis of rats exposed to total body irradiation, Turk. J. Med. Sci., 2023, vol. 53, pp. 902—908. https://doi.org/10.55730/1300-0144.5654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed, S. and Bakz, M., Will Nigella sativa oil protect parotid glands of rats against cranium gamma radiation? Histological and immunohistochemical evaluation, BMC Complement Med. Ther., 2024, vol. 24, p. 111. https://doi.org/10.1186/s12906-024-04410-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullaev, S., Gubina, N., Bulanova, T., et al., Assessment of nuclear and mitochondrial DNA, expression of mitochondria-related genes in different brain regions in rats after whole-body X-ray irradiation, Int. J. Mol. Sci., 2020, vol. 21, no. 4, p. 1196. https://doi.org/10.3390/ijms21041196

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdullaev, S.A., Glukhov, S.I., and Gaziev, A.I., Radioprotective and radiomitigative effects of melatonin in tissues with different proliferative activity, Antioxidants (Basel), 2021, vol. 10. https://doi.org/10.3390/antiox10121885

Gaziev, A.I., Ways to maintain the integrity of mitochondrial DNA and mitochondrial function in cells exposed to ionizing radiation, Radiats. Biol. Radioekol., 2013, vol. 53, no. 2, pp. 117—136.

CAS  Google Scholar 

Mikhailov, V.F., Saleeva, D.V., Rozhdestvensky, L.M., et al., Activity of genes and noncoding RNAs as an approach to determination of early biomarkers of radiation-induced cancer in mice, Russ. J. Genet., 2021, vol. 57, no. 10, pp. 1140—1148. https://doi.org/10.1134/S1022795421100070

Article  CAS  Google Scholar 

Long, G., Chen, H., Wu, M., et al., Antianemia drug roxadustat (FG-4592) protects against doxorubicin-induced cardiotoxicity by targeting antiapoptotic and antioxidative pathways, Front. Pharmacol., 2020, vol. 11. https://doi.org/10.3389/fphar.2020.01191

Wang, H., Yu, W., Wang, Y., et al., P53 contributes to cardiovascular diseases via mitochondria dysfunction: a new paradigm, Free Radic. Biol. Med., 2023, vol. 208, pp. 846—858. https://doi.org/10.1016/j.freeradbiomed.2023.09.036

Article  CAS  PubMed  Google Scholar 

Alsanosi, S., Sheikh, R., Sonbul, S., et al., The potential role of Nigella sativa seed oil as epigenetic therapy of cancer, Molecules, 2022, vol. 27. https://doi.org/10.3390/molecules27092779

Kaleem, M., Kayali, A., Sheikh, R.A., et al., In vitro and in vivo preventive effects of thymoquinone against breast cancer-role of DNMT1, Molecules (Basel), 2024, vol. 29, no. 2, p. 434. https://doi.org/10.3390/molecules29020434

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saleeva, D.V., Raeva, N.F., Abdullaev, S.A., et al., Preventive and therapeutic potential of thymoquinone for a number of human pathologies based on determining the activation of cellular components that perform protective functions through the activity of genes and non-coding RNAs, Gosp. Med.: Nauka Prakt., 2023, vol. 6, no. 2, pp. 27—36. https://doi.org/10.34852/GM3CVKG.2023.75.38.015

Article  Google Scholar 

Comments (0)

No login
gif