Synthesis and Evaluation of Chitosan/miR-125b-5p Nanoparticles for Targeting and Genes in MCF-7 Breast Cancer Cells

Siegel, R.L., Miller, K.D., Wagle, N.S., and Jemal, A., Cancer statistics, 2023, Ca-Cancer J. Clin., 2023, vol. 73, pp. 17—48. https://doi.org/10.3322/caac.21763

Article  PubMed  Google Scholar 

Ochoa, S. and Hernández-Lemus, E., Molecular mechanisms of multi-omic regulation in breast cancer, Front. Oncol., 2023, vol. 13, p. 1148861. https://doi.org/10.3389/fonc.2023.1148861

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Z., Richmond, A., and Yan, C., Immunomodulatory properties of PI3K/AKT/mTOR and MAPK/MEK/ERK inhibition augment response to immune checkpoint blockade in melanoma and triple-negative breast cancer, Int. J. Mol. Sci., 2022, vol. 23. https://doi.org/10.3390/ijms23137353

Lv, Y., Lv, X., Yang, H., et al., LncRNA SNHG6/miR-125b-5p/BMPR1B axis: a new therapeutic target for triple-negative breast cancer, Front. Oncol., 2021, vol. 11, p. 678474. https://doi.org/10.3389/fonc.2021.678474

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue, X., Gu, M., and Jia, T., Upregulated miR-125b mitigates inflammation, astrocyte activation, and dysfunction of spinal cord injury by inactivating the MAPK pathway, Histol. Histopathol., 2023, p. 18624. https://doi.org/10.14670/hh-18-624

Hofmann, M.H., Heinrich, J., Radziwill, G., and Moelling, K., A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells, Mol. Cancer Res., 2009, vol. 7, pp. 1635—1644. https://doi.org/10.1158/1541-7786.Mcr-09-0043

Article  CAS  PubMed  Google Scholar 

Saetrom, P., Biesinger, J., Li, S.M., et al., A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis, Cancer Res., 2009, vol. 69, pp. 7459—7465. https://doi.org/10.1158/0008-5472.Can-09-1201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahmed Mohmmed, E., Shousha, W.G., El-Saiid, A.S., and Ramadan, S.S., A clinical evaluation of circulating miR-106a and Raf-1 as breast cancer diagnostic and prognostic markers, Asian Pac. J. Cancer Prev., 2021, vol. 22, pp. 3513—3520. https://doi.org/10.31557/apjcp.2021.22.11.3513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chapellier, M., Bachelard-Cascales, E., Schmidt, X., et al., Disequilibrium of BMP2 levels in the breast stem cell niche launches epithelial transformation by overamplifying BMPR1B cell response, Stem Cell Rep., 2015, vol. 4, pp. 239—254. https://doi.org/10.1016/j.stemcr.2014.12.007

Article  CAS  Google Scholar 

Wang, L., Pan, T., Wang, Y., et al., Effect of nanoparticles of DOX and miR-125b on DNA damage repair in glioma U251 cells and underlying mechanisms, Molecules, 2022, vol. 27. https://doi.org/10.3390/molecules27196201

Su, Y., Sun, B., Gao, X., et al., Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis, Pharmaceutics, 2020, vol. 12. https://doi.org/10.3390/pharmaceutics12100907

Shamaeizadeh, N., Varshosaz, J., Mirian, M., and Aliomrani, M., Glutathione targeted tragacanthic acid—chitosan as a non-viral vector for brain delivery of miRNA-219a-5P: an in vitro/in vivo study, Int. J. Biol. Macromol., 2022, vol. 200, pp. 543—556. https://doi.org/10.1016/j.ijbiomac.2022.01.100

Article  CAS  PubMed  Google Scholar 

Ban, E., Kwon, T.H., and Kim, A., Delivery of therapeutic miRNA using polymer-based formulation, Drug Deliv. Transl. Res., 2019, vol. 9, pp. 1043—1056. https://doi.org/10.1007/s13346-019-00645-y

Article  CAS  PubMed  Google Scholar 

Denizli, M., Aslan, B., Mangala, L.S., et al., Chitosan nanoparticles for miRNA delivery, Methods Mol. Biol., 2017, vol. 1632, pp. 219—230. https://doi.org/10.1007/978-1-4939-7138-1_14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, X., Cao, M., Zhang, J., et al., Hyaluronic acid—chitosan nanoparticles for co-delivery of miR-34a and doxorubicin in therapy against triple negative breast cancer, Biomaterials, 2014, vol. 35, pp. 4333—4344. https://doi.org/10.1016/j.biomaterials.2014.02.006

Article  CAS  PubMed  Google Scholar 

Wu, K., Liu, M., Li, N., et al., Chitosan-miRNA functionalized microporous titanium oxide surfaces via a layer-by-layer approach with a sustained release profile for enhanced osteogenic activity, J. Nanobiotechnol., 2020, vol. 18, p. 127. https://doi.org/10.1186/s12951-020-00674-7

Article  CAS  Google Scholar 

Kaban, K., Salva, E., and Akbuga, J., In vitro dose studies on chitosan nanoplexes for microRNA delivery in breast cancer cells, Nucleic Acid Ther., 2017, vol. 27, pp. 45—55. https://doi.org/10.1089/nat.2016.0633

Article  CAS  PubMed  Google Scholar 

Chamandi, G., El-Hajjar, L., El Kurdi, A., et al., ER negative breast cancer and miRNA: there is more to decipher than what the pathologist can see!, Biomedicines, 2023, vol. 11. https://doi.org/10.3390/biomedicines11082300

Matuszyk, J. and Klopotowska, D., miR-125b lowers sensitivity to apoptosis following mitotic arrest: implications for breast cancer therapy, J. Cell Physiol., 2020, vol. 235, pp. 6335—6344. https://doi.org/10.1002/jcp.29610

Article  CAS  PubMed  Google Scholar 

Yang, M., Zhang, Y., Li, M., et al., The various role of microRNAs in breast cancer angiogenesis, with a special focus on novel miRNA-based delivery strategies, Cancer Cell Int., 2023, vol. 23, p. 24. https://doi.org/10.1186/s12935-022-02837-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pratiwi, R.D., El Muttaqien, S., Gustini, N., et al., Eco-friendly synthesis of chitosan and its medical application: from chitin extraction to nanoparticle preparation, ADMET DMPK, 2023, vol. 11, pp. 435—455. https://doi.org/10.5599/admet.1999

Article  PubMed  PubMed Central  Google Scholar 

Yee Kuen, C. and Masarudin, M.J., Chitosan nanoparticle-based system: a new insight into the promising controlled release system for lung cancer treatment, Molecules, 2022, vol. 27. https://doi.org/10.3390/molecules27020473

İlhan, H., Cakici, E.B., and Cakici, F., The comparative of chitosan and chitosan nanoparticle versus ethylenediaminetetraacetic acid on the smear layer removal: a systematic review and meta-analysis of in vitro study, Microsc. Res. Tech., 2023. https://doi.org/10.1002/jemt.24423

Santos-Carballal, B., Aaldering, L.J., Ritzefeld, M., et al., Physicochemical and biological characterization of chitosan—microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells, Sci. Rep., 2015, vol. 5, p. 13567. https://doi.org/10.1038/srep13567

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaban, K., Salva, E., and Akbuga, J., The effects of chitosan/miR-200c nanoplexes on different stages of cancers in breast cancer cell lines, Eur. J. Pharm. Sci., 2016, vol. 95, pp. 103—110. https://doi.org/10.1016/j.ejps.2016.05.030

Article  CAS  PubMed  Google Scholar 

Nie, J., Jiang, H.C., Zhou, Y.C., et al., MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/β-catenin pathway and EMT, Biosci. Biotechnol. Biochem., 2019, vol. 83, pp. 1062—1071. https://doi.org/10.1080/09168451.2019.1584521

Article  CAS  PubMed  Google Scholar 

Pridko, O., Borikun, T., Rossylna, O., et al., Expression pattern of miR-125b-2, -155, -221, and -320a is associated with response of breast cancer patients to tamoxifen, Exp. Oncol., 2022, vol. 44, pp. 295—299. https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-4.19152

Article  CAS  PubMed  Google Scholar 

Kassem, N.M., Makar, W.S., Kassem, H.A., et al., Circulating miR-34a and miR-125b as promising non invasive biomarkers in Egyptian locally advanced breast cancer patients, Asian Pac. J. Cancer Prev., 2019, vol. 20, pp. 2749—2755. https://doi.org/10.31557/apjcp.2019.20.9.2749

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Fadl, H.M.A., Hagag, N.M., El-Shafei, R.A., et al., Effective targeting of Raf-1 and its associated autophagy by novel extracted peptide for treating breast cancer cells, Front. Oncol., 2021, vol. 11, p. 682596. https://doi.org/10.3389/fonc.2021.682596

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azadeh, M., Salehzadeh, A., Ghaedi, K., and Talesh Sasani, S., Integrated high-throughput bioinformatics (microarray, RNA-Seq, and RNA interaction) and qRT-PCR investigation of BMPR1B axis as a potential diagnostic biomarker of Isfahan breast cancer, Adv. Biomed. Res., 2023, vol. 12, p. 120. https://doi.org/10.4103/abr.abr_200_22

Article  CAS  PubMed  PubMed Central  Google Scholar 

Comments (0)

No login
gif