MLC2: Physiological Functions and Potential Roles in Tumorigenesis

England, J., & Loughna, S. (2013). Heavy and light roles: myosin in the morphogenesis of the heart. Cellular and Molecular Life Sciences, 70(7), 1221–1239. https://doi.org/10.1007/s00018-012-1131-1.

Article  PubMed  CAS  Google Scholar 

Holzner, S., Bromberger, S., Wenzina, J., Neumüller, K., Holper, T. M., Petzelbauer, P., Bauer, W., Weber, B., & Schossleitner, K. (2021). Phosphorylated cingulin localises GEF-H1 at tight junctions to protect vascular barriers in blood endothelial cells. Journal of Cell Science, 134(17), jcs258557. https://doi.org/10.1242/jcs.258557.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sevrieva, I. R., Brandmeier, B., Ponnam, S., Gautel, M., Irving, M., Campbell, K. S., Sun, Y. B., & Kampourakis, T. (2020). Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. The Journal of Biological Chemistry, 295(14), 4398–4410. https://doi.org/10.1074/jbc.RA119.011945.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cao, L., Wang, Z., Zhang, D., Li, X., Hou, C., & Ren, C. (2021). Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation. Food chemistry, 356, 129655. https://doi.org/10.1016/j.foodchem.2021.129655.

Article  PubMed  CAS  Google Scholar 

Luo, L., Wang, L., Paré, P. D., Seow, C. Y., & Chitano, P. (2019). The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 317(2), L235–l246. https://doi.org/10.1152/ajplung.00051.2019.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sheikh, F., Lyon, R. C., & Chen, J. (2015). Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene, 569(1), 14–20. https://doi.org/10.1016/j.gene.2015.06.027.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bayne, E. F., Rossler, K. J., Gregorich, Z. R., Aballo, T. J., Roberts, D. S., Chapman, E. A., Guo, W., Palecek, S. P., Ralphe, J. C., Kamp, T. J., & Ge, Y. (2023). Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart. Journal of Molecular and Cellular Cardiology, 181, 89–97. https://doi.org/10.1016/j.yjmcc.2023.06.003.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sun, J., Qiao, Y. N., Tao, T., Zhao, W., Wei, L. S., Li, Y. Q., Wang, W., Wang, Y., Zhou, Y. W., Zheng, Y. Y., Chen, X., Pan, H. C., Zhang, X. N., & Zhu, M. S. (2020). Distinct roles of smooth muscle and non-muscle myosin light chain-mediated smooth muscle contraction. Frontiers in Physiology, 11, 593966. https://doi.org/10.3389/fphys.2020.593966.

Article  PubMed  PubMed Central  Google Scholar 

Sutherland, C., & Walsh, M. P. (2012). Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. The Journal of Biological Chemistry, 287(29), 24064–24076. https://doi.org/10.1074/jbc.M112.371609.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cho, S., Oh, S. B., Kim, H. J., & Kim, S. J. (2023). T18/S19 diphosphorylation of myosin regulatory light chain impairs pulmonary artery relaxation in monocrotaline-induced pulmonary hypertensive rats. Pflügers Archiv - European Journal of Physiology, 475(9), 1097–1112. https://doi.org/10.1007/s00424-023-02836-6.

Article  PubMed  CAS  Google Scholar 

Fang, X., Bogdanov, V., Davis, J. P., & Kekenes-Huskey, P. M. (2023). Molecular Insights into the MLCK Activation by CaM. Journal of Chemical Information and Modeling, 63(23), 7487–7498. https://doi.org/10.1021/acs.jcim.3c00954.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao, X., & Bayraktutan, U. (2023). Substance P reversibly compromises the integrity and function of blood-brain barrier. Peptides, 167, 171048. https://doi.org/10.1016/j.peptides.2023.171048.

Article  PubMed  CAS  Google Scholar 

Bruneau, A., Delaunay, J. L., Durand-Schneider, A. M., Vauthier, V., Ben Saad, A., Aoudjehane, L., El Mourabit, H., Morichon, R., Falguières, T., Gautheron, J., Housset, C., & Aït-Slimane, T. (2022). MRCK-Alpha and its effector myosin II regulatory light chain bind ABCB4 and regulate its membrane expression. Cells, 11(4), 617. https://doi.org/10.3390/cells11040617.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumazoe, M., Fujimura, Y., Shimada, Y., Onda, H., Hatakeyama, Y., & Tachibana, H. (2024). Fustin suppressed melanoma cell growth via cAMP/PKA-dependent mechanism. Bioscience, Biotechnology, and Biochemistry, 88(8), 900–907. https://doi.org/10.1093/bbb/zbae072.

Article  PubMed  Google Scholar 

Hong, F., Mollica, M. Y., Golla, K., De Silva, E., Sniadecki, N. J., López, J. A., & Kim, H. (2024). Filamin A regulates platelet shape change and contractile force generation via phosphorylation of the myosin light chain. The Biochemical Journal, 481, 1395–1410. https://doi.org/10.1042/bcj20240114.

Article  PubMed  CAS  Google Scholar 

Wilson, D. P., Sutherland, C., Borman, M. A., Deng, J. T., Macdonald, J. A., & Walsh, M. P. (2005). Integrin-linked kinase is responsible for Ca2+-independent myosin diphosphorylation and contraction of vascular smooth muscle. The Biochemical Journal, 392(Pt 3), 641–648. https://doi.org/10.1042/bj20051173.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hamao, K., Ono, T., Matsushita, M., & Hosoya, H. (2020). ZIP kinase phosphorylated and activated by Rho kinase/ROCK contributes to cytokinesis in mammalian cultured cells. Experimental Cell Research, 386(1), 111707. https://doi.org/10.1016/j.yexcr.2019.111707.

Article  PubMed  CAS  Google Scholar 

Lee, E., May, H., Kazmierczak, K., Liang, J., Nguyen, N., Hill, J. A., Gillette, T. G., Szczesna-Cordary, D., & Chang, A. N. (2024). The MYPT2-regulated striated muscle-specific myosin light chain phosphatase limits cardiac myosin phosphorylation in vivo. The Journal of Biological Chemistry, 300(2), 105652. https://doi.org/10.1016/j.jbc.2024.105652.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Prieto-Ruiz, F., Gómez-Gil, E., Martín-García, R., Pérez-Díaz, A. J., Vicente-Soler, J., Franco, A., Soto, T., Pérez, P., Madrid, M., & Cansado, J. (2023). Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism. eLife, 12, e83285. https://doi.org/10.7554/eLife.83285.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee, S. J., Kim, J. E., Jung, J. W., Choi, Y. J., Gong, J. E., Douangdeuane, B., Souliya, O., Choi, Y. W., Seo, S. B., & Hwang, D. Y. (2022). Novel role of Dipterocarpus tuberculatus as a stimulator of focal cell adhesion through the regulation of MLC2/FAK/Akt signaling pathway. Cell Adhesion & Migration, 16(1), 72–93. https://doi.org/10.1080/19336918.2022.2073002.

Article  CAS  Google Scholar 

Campos, J., Osorio-Barrios, F., Villanelo, F., Gutierrez-Maldonado, S. E., Vargas, P., Pérez-Acle, T., & Pacheco, R. (2024). Chemokinergic and dopaminergic signalling collaborates through the heteromer formed by CCR9 and dopamine receptor D5 increasing the migratory speed of effector CD4+ T-Cells to infiltrate the colonic mucosa. International Journal of Molecular Sciences, 25(18), 10022. https://doi.org/10.3390/ijms251810022.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cresto, N., Lebrun, N., Dumont, F., Letourneur, F., Billuart, P., & Rouach, N. (2022). Hippocampal excitatory synaptic transmission and plasticity are differentially altered during postnatal development by loss of the x-linked intellectual disability protein Oligophrenin-1. Cells, 11(9), 1545. https://doi.org/10.3390/cells11091545.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang, J., Gao, S., Dong, K., Guo, P., & Shan, M. J. (2021). MYL2 as a potential predictive biomarker for rhabdomyosarcoma. Medicine, 100(39), e27101. https://doi.org/10.1097/md.0000000000027101.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R. P., Chaudhry, S. I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., & Sahai, E. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 15(6), 637–646. https://doi.org/10.1038/ncb2756.

Article  PubMed  CAS  Google Scholar 

Comments (0)

No login
gif