England, J., & Loughna, S. (2013). Heavy and light roles: myosin in the morphogenesis of the heart. Cellular and Molecular Life Sciences, 70(7), 1221–1239. https://doi.org/10.1007/s00018-012-1131-1.
Article PubMed CAS Google Scholar
Holzner, S., Bromberger, S., Wenzina, J., Neumüller, K., Holper, T. M., Petzelbauer, P., Bauer, W., Weber, B., & Schossleitner, K. (2021). Phosphorylated cingulin localises GEF-H1 at tight junctions to protect vascular barriers in blood endothelial cells. Journal of Cell Science, 134(17), jcs258557. https://doi.org/10.1242/jcs.258557.
Article PubMed PubMed Central CAS Google Scholar
Sevrieva, I. R., Brandmeier, B., Ponnam, S., Gautel, M., Irving, M., Campbell, K. S., Sun, Y. B., & Kampourakis, T. (2020). Cardiac myosin regulatory light chain kinase modulates cardiac contractility by phosphorylating both myosin regulatory light chain and troponin I. The Journal of Biological Chemistry, 295(14), 4398–4410. https://doi.org/10.1074/jbc.RA119.011945.
Article PubMed PubMed Central CAS Google Scholar
Cao, L., Wang, Z., Zhang, D., Li, X., Hou, C., & Ren, C. (2021). Phosphorylation of myosin regulatory light chain at Ser17 regulates actomyosin dissociation. Food chemistry, 356, 129655. https://doi.org/10.1016/j.foodchem.2021.129655.
Article PubMed CAS Google Scholar
Luo, L., Wang, L., Paré, P. D., Seow, C. Y., & Chitano, P. (2019). The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 317(2), L235–l246. https://doi.org/10.1152/ajplung.00051.2019.
Article PubMed PubMed Central CAS Google Scholar
Sheikh, F., Lyon, R. C., & Chen, J. (2015). Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene, 569(1), 14–20. https://doi.org/10.1016/j.gene.2015.06.027.
Article PubMed PubMed Central CAS Google Scholar
Bayne, E. F., Rossler, K. J., Gregorich, Z. R., Aballo, T. J., Roberts, D. S., Chapman, E. A., Guo, W., Palecek, S. P., Ralphe, J. C., Kamp, T. J., & Ge, Y. (2023). Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart. Journal of Molecular and Cellular Cardiology, 181, 89–97. https://doi.org/10.1016/j.yjmcc.2023.06.003.
Article PubMed PubMed Central CAS Google Scholar
Sun, J., Qiao, Y. N., Tao, T., Zhao, W., Wei, L. S., Li, Y. Q., Wang, W., Wang, Y., Zhou, Y. W., Zheng, Y. Y., Chen, X., Pan, H. C., Zhang, X. N., & Zhu, M. S. (2020). Distinct roles of smooth muscle and non-muscle myosin light chain-mediated smooth muscle contraction. Frontiers in Physiology, 11, 593966. https://doi.org/10.3389/fphys.2020.593966.
Article PubMed PubMed Central Google Scholar
Sutherland, C., & Walsh, M. P. (2012). Myosin regulatory light chain diphosphorylation slows relaxation of arterial smooth muscle. The Journal of Biological Chemistry, 287(29), 24064–24076. https://doi.org/10.1074/jbc.M112.371609.
Article PubMed PubMed Central CAS Google Scholar
Cho, S., Oh, S. B., Kim, H. J., & Kim, S. J. (2023). T18/S19 diphosphorylation of myosin regulatory light chain impairs pulmonary artery relaxation in monocrotaline-induced pulmonary hypertensive rats. Pflügers Archiv - European Journal of Physiology, 475(9), 1097–1112. https://doi.org/10.1007/s00424-023-02836-6.
Article PubMed CAS Google Scholar
Fang, X., Bogdanov, V., Davis, J. P., & Kekenes-Huskey, P. M. (2023). Molecular Insights into the MLCK Activation by CaM. Journal of Chemical Information and Modeling, 63(23), 7487–7498. https://doi.org/10.1021/acs.jcim.3c00954.
Article PubMed PubMed Central CAS Google Scholar
Gao, X., & Bayraktutan, U. (2023). Substance P reversibly compromises the integrity and function of blood-brain barrier. Peptides, 167, 171048. https://doi.org/10.1016/j.peptides.2023.171048.
Article PubMed CAS Google Scholar
Bruneau, A., Delaunay, J. L., Durand-Schneider, A. M., Vauthier, V., Ben Saad, A., Aoudjehane, L., El Mourabit, H., Morichon, R., Falguières, T., Gautheron, J., Housset, C., & Aït-Slimane, T. (2022). MRCK-Alpha and its effector myosin II regulatory light chain bind ABCB4 and regulate its membrane expression. Cells, 11(4), 617. https://doi.org/10.3390/cells11040617.
Article PubMed PubMed Central CAS Google Scholar
Kumazoe, M., Fujimura, Y., Shimada, Y., Onda, H., Hatakeyama, Y., & Tachibana, H. (2024). Fustin suppressed melanoma cell growth via cAMP/PKA-dependent mechanism. Bioscience, Biotechnology, and Biochemistry, 88(8), 900–907. https://doi.org/10.1093/bbb/zbae072.
Hong, F., Mollica, M. Y., Golla, K., De Silva, E., Sniadecki, N. J., López, J. A., & Kim, H. (2024). Filamin A regulates platelet shape change and contractile force generation via phosphorylation of the myosin light chain. The Biochemical Journal, 481, 1395–1410. https://doi.org/10.1042/bcj20240114.
Article PubMed CAS Google Scholar
Wilson, D. P., Sutherland, C., Borman, M. A., Deng, J. T., Macdonald, J. A., & Walsh, M. P. (2005). Integrin-linked kinase is responsible for Ca2+-independent myosin diphosphorylation and contraction of vascular smooth muscle. The Biochemical Journal, 392(Pt 3), 641–648. https://doi.org/10.1042/bj20051173.
Article PubMed PubMed Central CAS Google Scholar
Hamao, K., Ono, T., Matsushita, M., & Hosoya, H. (2020). ZIP kinase phosphorylated and activated by Rho kinase/ROCK contributes to cytokinesis in mammalian cultured cells. Experimental Cell Research, 386(1), 111707. https://doi.org/10.1016/j.yexcr.2019.111707.
Article PubMed CAS Google Scholar
Lee, E., May, H., Kazmierczak, K., Liang, J., Nguyen, N., Hill, J. A., Gillette, T. G., Szczesna-Cordary, D., & Chang, A. N. (2024). The MYPT2-regulated striated muscle-specific myosin light chain phosphatase limits cardiac myosin phosphorylation in vivo. The Journal of Biological Chemistry, 300(2), 105652. https://doi.org/10.1016/j.jbc.2024.105652.
Article PubMed PubMed Central CAS Google Scholar
Prieto-Ruiz, F., Gómez-Gil, E., Martín-García, R., Pérez-Díaz, A. J., Vicente-Soler, J., Franco, A., Soto, T., Pérez, P., Madrid, M., & Cansado, J. (2023). Myosin II regulatory light chain phosphorylation and formin availability modulate cytokinesis upon changes in carbohydrate metabolism. eLife, 12, e83285. https://doi.org/10.7554/eLife.83285.
Article PubMed PubMed Central CAS Google Scholar
Lee, S. J., Kim, J. E., Jung, J. W., Choi, Y. J., Gong, J. E., Douangdeuane, B., Souliya, O., Choi, Y. W., Seo, S. B., & Hwang, D. Y. (2022). Novel role of Dipterocarpus tuberculatus as a stimulator of focal cell adhesion through the regulation of MLC2/FAK/Akt signaling pathway. Cell Adhesion & Migration, 16(1), 72–93. https://doi.org/10.1080/19336918.2022.2073002.
Campos, J., Osorio-Barrios, F., Villanelo, F., Gutierrez-Maldonado, S. E., Vargas, P., Pérez-Acle, T., & Pacheco, R. (2024). Chemokinergic and dopaminergic signalling collaborates through the heteromer formed by CCR9 and dopamine receptor D5 increasing the migratory speed of effector CD4+ T-Cells to infiltrate the colonic mucosa. International Journal of Molecular Sciences, 25(18), 10022. https://doi.org/10.3390/ijms251810022.
Article PubMed PubMed Central CAS Google Scholar
Cresto, N., Lebrun, N., Dumont, F., Letourneur, F., Billuart, P., & Rouach, N. (2022). Hippocampal excitatory synaptic transmission and plasticity are differentially altered during postnatal development by loss of the x-linked intellectual disability protein Oligophrenin-1. Cells, 11(9), 1545. https://doi.org/10.3390/cells11091545.
Article PubMed PubMed Central CAS Google Scholar
Wang, J., Gao, S., Dong, K., Guo, P., & Shan, M. J. (2021). MYL2 as a potential predictive biomarker for rhabdomyosarcoma. Medicine, 100(39), e27101. https://doi.org/10.1097/md.0000000000027101.
Article PubMed PubMed Central CAS Google Scholar
Calvo, F., Ege, N., Grande-Garcia, A., Hooper, S., Jenkins, R. P., Chaudhry, S. I., Harrington, K., Williamson, P., Moeendarbary, E., Charras, G., & Sahai, E. (2013). Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nature Cell Biology, 15(6), 637–646. https://doi.org/10.1038/ncb2756.
Comments (0)