D’Cruz AK, Vaish R, Dhar H. Oral cancers: current status. Oral Oncol. 2018;87:64–9. https://doi.org/10.1016/j.oraloncology.2018.10.013.
Matsuo K, Akiba J, Kusukawa J, Yano H. Squamous cell carcinoma of the tongue: subtypes and morphological features affecting prognosis. Am J Physiol Cell Physiol. 2022;323:C1611–23. https://doi.org/10.1152/ajpcell.00098.2022.
Article CAS PubMed Google Scholar
Greenberg JS, El Naggar AK, Mo V, Roberts D, Myers JN. Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Implication for therapeutic decision making: implications for therapeutic decision making. Cancer. 2003;98:508–15. https://doi.org/10.1002/cncr.11526.
Moore KA, Ford PJ, Farah CS. Support needs and quality of life in oral cancer: a systematic review. Int J Dent Hyg. 2014;12:36–47. https://doi.org/10.1111/idh.12051.
Article CAS PubMed Google Scholar
Hamdy O, Ros MH, Saleh MM, Eladl AE, Metwally IH. Is it essential to remove the submandibular gland in neck dissection in tongue cancer patients? J Stomatol Oral Maxillofac Surg. 2022;123:239–42. https://doi.org/10.1016/j.jormas.2021.03.008.
Gane EM, Michaleff ZA, Cottrell MA, McPhail SM, Hatton AL, Panizza BJ, O’Leary SPO. Prevalence, incidence, and risk factors for shoulder and neck dysfunction after neck dissection: a systematic review. Eur J Surg Oncol. 2017;43:1199–218.
Article CAS PubMed Google Scholar
Liao C-T, Wang H-M, Chang JT-C, Ng S-H, Hsueh C, Lee L-Y, Lin CH, Chen IH, Huang SF, Yen TC. Analysis of risk factors for distant metastases in squamous cell carcinoma of the oral cavity. Cancer. 2007;110:1501–8.
Liao C-T, Chang JT-C, Wang H-M, Ng S-H, Hsueh C, Lee L-Y, Lin C-H, Chen I-H, Huang S-F, Cheng AJ, Yen T-C. Survival in squamous cell carcinoma of the oral cavity: differences between pT4 N0 and other stage IVA categories. Cancer. 2007;110:564–71.
Liao C-T, Hsueh C, Lee L-Y, Lin C-Y, Fan K-H, Wang H-M, Huang SF, Chen IH, Na SH, Tsao CK, Huang YC, Yen TC. Neck dissection field and lymph node density predict prognosis in patients with oral cavity cancer and pathological node metastases treated with adjuvant therapy. Oral Oncol. 2012;48:329–36. https://doi.org/10.1016/j.oraloncology.2011.10.017.
Chang AE, Matory YL, Dwyer AJ, Hill SC, Girton ME, Steinberg SM, Knop RH, Frank JA, Hyams D, Doppman JL, Rosenberg SA. Magnetic resonance imaging versus computed tomography in the evaluation of soft tissue tumors of the extremities. Ann Surg. 1987;205:340–8. https://doi.org/10.1097/00000658-198704000-00002.
Article CAS PubMed PubMed Central Google Scholar
Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to radiomics. J Nucl Med. 2020;61:488–95. https://doi.org/10.2967/jnumed.118.222893.
Article CAS PubMed PubMed Central Google Scholar
Su G-H, Xiao Y, Jiang L, Zheng R-C, Wang H, Chen Y, Gu YJ, You C, Shao ZM. Radiomics features for assessing tumor-infiltrating lymphocytes correlate with molecular traits of triple-negative breast cancer. J Transl Med. 2022;20:471. https://doi.org/10.1186/s12967-022-03688-x.
Article CAS PubMed PubMed Central Google Scholar
Zhang L, Giuste F, Vizcarra JC, Li X, Gutman D. Radiomics features predict CIC mutation status in lower grade glioma. Front Oncol. 2020;10:937. https://doi.org/10.3389/fonc.2020.00937.
Article PubMed PubMed Central Google Scholar
Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, Sanduleanu S, Larue RTHM, Even AJG, Jochems A, van Wijk Y, Woodruff H, van Soest J, Lustberg T, Roelofs E, van Elmpt W, Dekker A, Mottaghy FM, Wildberger JE, Walsh S. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141.
Zhang X, Zhang Y, Zhang G, Qiu X, Tan W, Yin X, Liao L. Deep learning with radiomics for disease diagnosis and treatment: Challenges and potential. Front Oncol. 2022;12: 773840. https://doi.org/10.3389/fonc.2022.773840.
Article PubMed PubMed Central Google Scholar
Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics International. 2004. https://imagej.net/ij/docs/pdfs/image_processing_with_imagej.pdf
Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sanka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.
Article PubMed PubMed Central Google Scholar
van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts HJWL. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.
Article CAS PubMed PubMed Central Google Scholar
Materka A, Strzelecki M (1998). Texture analysis methods: a review. COST B11 report. Brussels
Kozak MM, Shah J, Chen M, Schaberg K, von Eyben R, Chen JJ, Bui T, Kong C, Kaplan M, Divi V, Hara W. Depth of invasion alone as a prognostic factor in low-risk early-stage oral cavity carcinoma: depth of invasion in oral cavity cancer. Laryngoscope. 2019;129:2082–6. https://doi.org/10.1002/lary.27753.
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.
Article CAS PubMed Google Scholar
Corti A, De Cecco L, Cavalieri S, Lenoci D, Pistore F, Calareso G, Mattavelli D, de Graaf P, Leemans CR, Brakenhoff RH, Ravanelli M, Poli T, Licitra L, Corino V, Mainardi L. MRI-based radiomic prognostic signature for locally advanced oral cavity squamous cell carcinoma: development, testing and comparison with genomic prognostic signatures. Biomark Res. 2023;11:69. https://doi.org/10.1186/s40364-023-00494-5.
Article PubMed PubMed Central Google Scholar
Mes SW, van Velden FHP, Peltenburg B, Peeters CFW, Te Beest DE, van de Wiel MA, Mekke J, Mulder DC, Martens RM, Castelijns JA, Pameijer FA, de Bree R, Boellaard R, Leemans CR, Brakenhoff RH, de Graaf P. Outcome prediction of head and neck squamous cell carcinoma by MRI radiomic signatures. Eur Radiol. 2020;30:6311–21. https://doi.org/10.1007/s00330-020-06962-y.
Article PubMed PubMed Central Google Scholar
Vidiri A, Marzi S, Piludu F, Lucchese S, Dolcetti V, Polito E, Mazzola F, Marchesi P, Merenda E, Sperduti I, Pellini R, Covello R. Magnetic resonance imaging-based prediction models for tumor stage and cervical lymph node metastasis of tongue squamous cell carcinoma. Comput Struct Biotechnol J. 2023;21:4277–87. https://doi.org/10.1016/j.csbj.2023.08.020.
Article CAS PubMed PubMed Central Google Scholar
Yuan Y, Ren J, Tao X. Machine learning-based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol. 2021;31:6429–37. https://doi.org/10.1007/s00330-021-07731-1.
Wang F, Tan R, Feng K, Hu J, Zhuang Z, Wang C, Hou J, Liu X. Magnetic resonance imaging-based radiomics features associated with depth of invasion predicted lymph node metastasis and prognosis in tongue cancer. J Magn Reson Imaging. 2022;56:196–209. https://doi.org/10.1002/jmri.28019.
Shafiq-Ul-Hassan M, Latifi K, Zhang G, Ullah G, Gillies R, Moros E. Voxel size and gray level normalization of CT radiomic features in lung cancer. Sci Rep. 2018;8:10545. https://doi.org/10.1038/s41598-018-28895-9.
Article CAS PubMed PubMed Central Google Scholar
Duron L, Balvay D, VandePerre S, Bouchouicha A, Savatovsky J, Sadik J-C, Thomassin-Naggara I, Fournier L, Lecler A. Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS ONE. 2019;14: e0213459. https://doi.org/10.1371/journal.pone.0213459.
Comments (0)