Isolating, Screening, and Optimizing Antioxidant Production of Endophytic Bacteria From Roscoe (Ginger)

Kizhakkayil J, Sasikumar B (2011) Diversity, characterization and utilization of ginger: a review. Plant Genet Resour 9(3):464–477. https://doi.org/10.1017/S1479262111000670

Article  Google Scholar 

Kubra IR, Rao LJ (2012) An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit Rev Food Sci Nutr 52(8):651–688. https://doi.org/10.1080/10408398.2010.505689

Article  PubMed  CAS  Google Scholar 

Li Y, Tran VH, Duke CC, Roufogalis BD (2012) Preventive and protective properties of zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evid -Based Complement Altern Med. https://doi.org/10.1155/2012/516870

Article  Google Scholar 

Lechner JF, Stoner GD (2019) Gingers and their purified components as cancer chemopreventative agents. Molecules 24(16):2859. https://doi.org/10.3390/molecules24162859

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shahrajabian MH, Sun W, Cheng Q (2019) Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand Sect B 69(6):546–556. https://doi.org/10.1080/09064710.2019.1606930

Article  CAS  Google Scholar 

Anh NH, Kim SJ, Long NP, Min JE, Yoon YC, Lee EG, Kim M, Kim TJ, Yang YY, Son EY, Yoon SJ, Diem NC, Kim HM, Kwon SW (2020) Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. https://doi.org/10.3390/nu12010157

Article  PubMed  PubMed Central  Google Scholar 

Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. https://doi.org/10.3390/foods8060185

Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 12(2):165–170. https://doi.org/10.1515/jcim-2014-0021

Article  PubMed  CAS  Google Scholar 

Jing Y, Cheng W, Li M, Zhang Y, Pang X, Qiu X, Zheng Y, Zhang D, Wu L (2023) Structural characterization, rheological properties, antioxidant and anti-inflammatory activities of polysaccharides from zingiber officinale. Plant Foods Hum Nutr 78(1):160–165. https://doi.org/10.1007/s11130-022-01033-7

Article  PubMed  CAS  Google Scholar 

Rostamkhani H, Veisi P, Niknafs B, Jafarabadi MA, Ghoreishi Z (2023) The effect of zingiber officinale on prooxidant-antioxidant balance and glycemic control in diabetic patients with ESRD undergoing hemodialysis: a double-blind randomized control trial. BMC Complement Med Ther 23(1):52. https://doi.org/10.1186/s12906-023-03874-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001

Article  PubMed  CAS  Google Scholar 

Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B (2021) Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front Plant Sci 12:646146

Article  PubMed  PubMed Central  Google Scholar 

Salam N, Khieu T-N, Liu M-J, Vu T-T, Chu-Ky S, Quach N-T, Phi Q-T, Narsing Rao MP, Fontana A, Sarter S (2017) Endophytic actinobacteria associated with dracaena cochinchinensis lour: isolation, diversity, and their cytotoxic activities. BioMed Res Int. https://doi.org/10.5897/AJMR2013.6541

Article  PubMed  PubMed Central  Google Scholar 

Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Countr 9(09):954–961. https://doi.org/10.3855/jidc.4967

Article  CAS  Google Scholar 

Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60(3):167–171. https://doi.org/10.1007/s00284-009-9520-x

Article  PubMed  CAS  Google Scholar 

Song X, Wu H, Yin Z, Lian M, Yin C (2017) Endophytic bacteria isolated from panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22(6):837. https://doi.org/10.3390/molecules22060837

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic gram-positive bacteria. Front Microbiol 10:463. https://doi.org/10.3389/fmicb.2019.00463

Article  PubMed  PubMed Central  Google Scholar 

Rustamova N, Wubulikasimu A, Mukhamedov N, Gao Y, Egamberdieva D, Yili A (2020) Endophytic bacteria associated with medicinal plant vernonia anthelmintica: diversity and characterization. Curr Microbiol 77(8):1457–1465. https://doi.org/10.1007/s00284-020-01924-5

Article  PubMed  CAS  Google Scholar 

Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3Biotech 4(2):197–204. https://doi.org/10.1007/s13205-013-0143-3

Article  CAS  Google Scholar 

Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75(4):505–511. https://doi.org/10.1007/s00284-017-1410-z

Article  PubMed  CAS  Google Scholar 

Chauhan B, Singh N, Kaswan V, Soni K, Soni N (2023) Endophytic bacteria showing antioxidant property from periwinkle [Catharanthus roseus (L.) G. Don]. Intl J Bio-resour Stress Manag 14:691–700. https://doi.org/10.23910/1.2023.3489

Article  CAS  Google Scholar 

Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22(7):3380. https://doi.org/10.3390/ijms22073380

Article  PubMed  PubMed Central  CAS  Google Scholar 

Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64(5):997–1027. https://doi.org/10.1021/acs.jafc.5b04739

Article  PubMed  CAS  Google Scholar 

Dai TTX, Chau TT, Truong TTP, Tran LC, Nguyen NTK (2024) Isolating Miliusa velutina endophytic bacteria to generate antioxidants and optimizing culture conditions for antioxidant production. S Afr J Bot 166:561–570. https://doi.org/10.1016/j.sajb.2024.01.052

Article  CAS  Google Scholar 

Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183. https://doi.org/10.1016/j.proeng.2012.01.1254

Article  CAS  Google Scholar 

Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008

Article  CAS  Google Scholar 

Claus D (1992) A standardized gram staining procedure. World J Microbiol Biotechnol 8(4):451–452. https://doi.org/10.1007/bf01198764

Article  PubMed  CAS  Google Scholar 

Paul Vos GMG, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2010) Bergey’s manual of systematic bacteriology. Springer, New York

Google Scholar 

Neumann B, Pospiech A, Schairer HU (1992) Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 8(10):332–333. https://doi.org/10.1016/0168-9525(92)90269-a

Article 

Comments (0)

No login
gif