Kizhakkayil J, Sasikumar B (2011) Diversity, characterization and utilization of ginger: a review. Plant Genet Resour 9(3):464–477. https://doi.org/10.1017/S1479262111000670
Kubra IR, Rao LJ (2012) An impression on current developments in the technology, chemistry, and biological activities of ginger (Zingiber officinale Roscoe). Crit Rev Food Sci Nutr 52(8):651–688. https://doi.org/10.1080/10408398.2010.505689
Article PubMed CAS Google Scholar
Li Y, Tran VH, Duke CC, Roufogalis BD (2012) Preventive and protective properties of zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evid -Based Complement Altern Med. https://doi.org/10.1155/2012/516870
Lechner JF, Stoner GD (2019) Gingers and their purified components as cancer chemopreventative agents. Molecules 24(16):2859. https://doi.org/10.3390/molecules24162859
Article PubMed PubMed Central CAS Google Scholar
Shahrajabian MH, Sun W, Cheng Q (2019) Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand Sect B 69(6):546–556. https://doi.org/10.1080/09064710.2019.1606930
Anh NH, Kim SJ, Long NP, Min JE, Yoon YC, Lee EG, Kim M, Kim TJ, Yang YY, Son EY, Yoon SJ, Diem NC, Kim HM, Kwon SW (2020) Ginger on human health: a comprehensive systematic review of 109 randomized controlled trials. Nutrients. https://doi.org/10.3390/nu12010157
Article PubMed PubMed Central Google Scholar
Mao QQ, Xu XY, Cao SY, Gan RY, Corke H, Beta T, Li HB (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. https://doi.org/10.3390/foods8060185
Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S (2015) The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J Complement Integr Med 12(2):165–170. https://doi.org/10.1515/jcim-2014-0021
Article PubMed CAS Google Scholar
Jing Y, Cheng W, Li M, Zhang Y, Pang X, Qiu X, Zheng Y, Zhang D, Wu L (2023) Structural characterization, rheological properties, antioxidant and anti-inflammatory activities of polysaccharides from zingiber officinale. Plant Foods Hum Nutr 78(1):160–165. https://doi.org/10.1007/s11130-022-01033-7
Article PubMed CAS Google Scholar
Rostamkhani H, Veisi P, Niknafs B, Jafarabadi MA, Ghoreishi Z (2023) The effect of zingiber officinale on prooxidant-antioxidant balance and glycemic control in diabetic patients with ESRD undergoing hemodialysis: a double-blind randomized control trial. BMC Complement Med Ther 23(1):52. https://doi.org/10.1186/s12906-023-03874-4
Article PubMed PubMed Central CAS Google Scholar
Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001
Article PubMed CAS Google Scholar
Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, Zhu B (2021) Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front Plant Sci 12:646146
Article PubMed PubMed Central Google Scholar
Salam N, Khieu T-N, Liu M-J, Vu T-T, Chu-Ky S, Quach N-T, Phi Q-T, Narsing Rao MP, Fontana A, Sarter S (2017) Endophytic actinobacteria associated with dracaena cochinchinensis lour: isolation, diversity, and their cytotoxic activities. BioMed Res Int. https://doi.org/10.5897/AJMR2013.6541
Article PubMed PubMed Central Google Scholar
Nongkhlaw FM, Joshi SR (2015) Investigation on the bioactivity of culturable endophytic and epiphytic bacteria associated with ethnomedicinal plants. J Infect Dev Countr 9(09):954–961. https://doi.org/10.3855/jidc.4967
Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012
Article PubMed PubMed Central CAS Google Scholar
Tiwari R, Kalra A, Darokar MP, Chandra M, Aggarwal N, Singh AK, Khanuja SPS (2010) Endophytic bacteria from ocimum sanctum and their yield enhancing capabilities. Curr Microbiol 60(3):167–171. https://doi.org/10.1007/s00284-009-9520-x
Article PubMed CAS Google Scholar
Song X, Wu H, Yin Z, Lian M, Yin C (2017) Endophytic bacteria isolated from panax ginseng improves ginsenoside accumulation in adventitious ginseng root culture. Molecules 22(6):837. https://doi.org/10.3390/molecules22060837
Article PubMed PubMed Central CAS Google Scholar
Ek-Ramos MJ, Gomez-Flores R, Orozco-Flores AA, Rodríguez-Padilla C, González-Ochoa G, Tamez-Guerra P (2019) Bioactive products from plant-endophytic gram-positive bacteria. Front Microbiol 10:463. https://doi.org/10.3389/fmicb.2019.00463
Article PubMed PubMed Central Google Scholar
Rustamova N, Wubulikasimu A, Mukhamedov N, Gao Y, Egamberdieva D, Yili A (2020) Endophytic bacteria associated with medicinal plant vernonia anthelmintica: diversity and characterization. Curr Microbiol 77(8):1457–1465. https://doi.org/10.1007/s00284-020-01924-5
Article PubMed CAS Google Scholar
Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK (2014) Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3Biotech 4(2):197–204. https://doi.org/10.1007/s13205-013-0143-3
Rohini S, Aswani R, Kannan M, Sylas VP, Radhakrishnan EK (2018) Culturable endophytic bacteria of ginger rhizome and their remarkable multi-trait plant growth-promoting features. Curr Microbiol 75(4):505–511. https://doi.org/10.1007/s00284-017-1410-z
Article PubMed CAS Google Scholar
Chauhan B, Singh N, Kaswan V, Soni K, Soni N (2023) Endophytic bacteria showing antioxidant property from periwinkle [Catharanthus roseus (L.) G. Don]. Intl J Bio-resour Stress Manag 14:691–700. https://doi.org/10.23910/1.2023.3489
Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22(7):3380. https://doi.org/10.3390/ijms22073380
Article PubMed PubMed Central CAS Google Scholar
Apak R, Özyürek M, Güçlü K, Çapanoğlu E (2016) Antioxidant activity/capacity measurement. 1. classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem 64(5):997–1027. https://doi.org/10.1021/acs.jafc.5b04739
Article PubMed CAS Google Scholar
Dai TTX, Chau TT, Truong TTP, Tran LC, Nguyen NTK (2024) Isolating Miliusa velutina endophytic bacteria to generate antioxidants and optimizing culture conditions for antioxidant production. S Afr J Bot 166:561–570. https://doi.org/10.1016/j.sajb.2024.01.052
Phetcharat P, Duangpaeng A (2012) Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng 32:177–183. https://doi.org/10.1016/j.proeng.2012.01.1254
Sharma OP, Bhat TK (2009) DPPH antioxidant assay revisited. Food Chem 113(4):1202–1205. https://doi.org/10.1016/j.foodchem.2008.08.008
Claus D (1992) A standardized gram staining procedure. World J Microbiol Biotechnol 8(4):451–452. https://doi.org/10.1007/bf01198764
Article PubMed CAS Google Scholar
Paul Vos GMG, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (2010) Bergey’s manual of systematic bacteriology. Springer, New York
Neumann B, Pospiech A, Schairer HU (1992) Rapid isolation of genomic DNA from gram-negative bacteria. Trends Genet 8(10):332–333. https://doi.org/10.1016/0168-9525(92)90269-a
Comments (0)