Heindel W, Gübitz R, Vieth V, Weckesser M, Schober O, Schäfers M. The diagnostic imaging of bone metastases. Dtsch Arzteblatt Int. 2014;111:741–7.
Hajianfar G, Sabouri M, Salimi Y, Amini M, Bagheri S, Jenabi E, et al. Artificial intelligence-based analysis of whole-body bone scintigraphy: the quest for the optimal deep learning algorithm and comparison with human observer performance. Z Med Phys. 2024;34:242–57.
Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng. 2010;22:1345–59.
Godec P, Pančur M, Ilenič N, Čopar A, Stražar M, Erjavec A, et al. Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nat Commun. 2019;10:4551.
Article PubMed PubMed Central Google Scholar
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR). 2016. pp. 2818–26.
ImageNet. [cited 2025 Mar 6]. Available from: https://www.image-net.org/index.php
Demšar J, Curk T, Erjavec A, Gorup Č, Hočevar T, Milutinovič M, et al. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–53.
tensorflow/models [Internet]. tensorflow. 2025 [cited 2025 Feb 24]. Available from: https://github.com/tensorflow/models
Qu K, Xu J, Hou Q, Qu K, Sun Y. Feature selection using information gain and decision information in neighborhood decision system. Appl Soft Comput. 2023;136:110100.
Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning. 2nd ed. New York: Springer; 2009. (Springer Series in Statistics). Available from: https://doi.org/10.1007/978-0-387-84858-7
biolab/orange3. Bioinformatics Laboratory. 2025 [cited 2025 Feb 24]. Available from: https://github.com/biolab/orange3
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Efficient bone metastasis diagnosis in bone scintigraphy using a fast convolutional neural network architecture. Diagn Basel Switz. 2020;10:532.
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K. Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLoS ONE. 2020;15:e0237213.
Article PubMed PubMed Central Google Scholar
Ntakolia C, Diamantis DE, Papandrianos N, Moustakidis S, Papageorgiou EI. A lightweight convolutional neural network architecture applied for bone metastasis classification in nuclear medicine: A case study on prostate Cancer patients. Healthc Basel Switz. 2020;8:493.
Papandrianos N, Papageorgiou EI, Anagnostis A. Development of convolutional neural networks to identify bone metastasis for prostate cancer patients in bone scintigraphy. Ann Nucl Med. 2020;34:824–32.
Liu Y, Yang P, Pi Y, Jiang L, Zhong X, Cheng J, et al. Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network. BMC Med Imaging. 2021;21:131.
Article PubMed PubMed Central Google Scholar
Li T, Lin Q, Guo Y, Zhao S, Zeng X, Man Z, et al. Automated detection of skeletal metastasis of lung cancer with bone scans using convolutional nuclear network. Phys Med Biol. 2022;67(1). https://doi.org/10.1088/1361-6560/ac4565.
Han S, Oh JS, Lee JJ. Diagnostic performance of deep learning models for detecting bone metastasis on whole-body bone scan in prostate cancer. Eur J Nucl Med Mol Imaging. 2022;49:585–95.
Guo Y, Lin Q, Zhao S, Li T, Cao Y, Man Z, et al. Automated detection of lung cancer-caused metastasis by classifying scintigraphic images using convolutional neural network with residual connection and hybrid attention mechanism. Insights Imaging. 2022;13:24.
Article PubMed PubMed Central Google Scholar
Wang Y, Lin Q, Zhao S, Zeng X, Zheng B, Cao Y, et al. Automated diagnosis of bone metastasis by classifying bone scintigrams using a Self-defined deep learning model. Curr Med Imaging. 2024. https://doi.org/10.2174/0115734056281578231212104108.
Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, et al. Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. Sci Rep. 2020;10:17046.
Article PubMed PubMed Central Google Scholar
Aoki Y, Nakayama M, Nomura K, Tomita Y, Nakajima K, Yamashina M, et al. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann Nucl Med. 2020;34:926–31.
Gholizade M, Soltanizadeh H, Rahmanimanesh M, Sana SS. A review of recent advances and strategies in transfer learning. Int J Syst Assur Eng Manag. 2025 Feb 21 [cited 2025 Feb 26]; Available from: https://doi.org/10.1007/s13198-024-02684-2
Comments (0)