Saving from the dark side of light at night: differential effects of complete darkness in the first and second half of dimly illuminated nights on sleep and metabolism

Abdul-Wahed A, Gautier-Stein A, Casteras S, Soty M, Roussel D, Romestaing C, Mithieux G (2014) A link between hepatic glucose production and peripheral energy metabolism via hepatokines. Mol Metab 3(5):531–543. https://doi.org/10.1016/j.molmet.2014.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aschoff J (1981) Handbook of behavioral neurobiology. Biological rhythms, vol 4. Plenum, New York, p 563

Google Scholar 

Batra T, Malik I, Kumar V (2019) Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches. Environ Pol 254:112916. https://doi.org/10.1016/j.envpol.2019.07.084

Article  CAS  Google Scholar 

Batra T, Malik I, Prabhat A, Bhardwaj SK, Kumar V (2020) Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proc Roy Soc B, 287(1928): 20192952. https://doi.org/10.1098/rspb.2019.2952

Batra T, Buniyaadi A, Kumar V (2022) Daytime restriction of feeding prevents illuminated night-induced impairment of metabolism and sleep in diurnal zebra finches. Physiol Behav 253:113866. https://doi.org/10.1016/j.physbeh.2022.113866

Article  CAS  PubMed  Google Scholar 

Buniyaadi A, Prabhat A, Bhardwaj SK, Kumar V (2022) Night melatonin levels affect cognition in diurnal animals: molecular insights from a Corvid exposed to an illuminated night environment. Environ Pol 308:119618. https://doi.org/10.1016/j.envpol.2022.119618

Article  CAS  Google Scholar 

Buniyaadi A, Prabhat A, Bhardwaj SK, Kumar V (2025) Role of melatonin in physiological mitigation of sleep disruption in an unnatural Temporal environment. J Neuroendocrinol e70035. https://doi.org/10.1111/jne.70035

Article  Google Scholar 

Byers MS, Howard C, Malek X (2017) Avian and mammalian facilitative glucose transporters. Microarrays 6(2):7. https://doi.org/10.3390/microarrays6020007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cain SW, McGlashan EM, Vidafar P, Mustafovska J, Curran SP, Wang X et al (2020) Evening home lighting adversely impacts the circadian system and sleep. Sci Rep 10:19110. https://doi.org/10.1038/s41598-020-76109-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho CH, Lee HJ, Yoon HK, Kang SG, Bok KN, Jung KY, Lee EI (2016) Exposure to dim artificial light at night increases REM sleep and awakenings in humans. Chronobiol Internat 33(1):117–123. https://doi.org/10.3109/07420528.2015.1108980

Article  Google Scholar 

Da Silva A, Samplonius JM, Schlicht E, Valcu M, Kempenaers B (2014) Artificial night lighting rather than traffic noise affects the daily timing of dawn and dusk singing in common European songbirds. Behav Ecol 25:1037–1047. https://doi.org/10.1093/beheco/aru103

Article  Google Scholar 

de Jong M, Ouyang JQ, van Grunsven RH, Visser ME, Spoelstra K (2016) Do wild great Tits avoid exposure to light at night? PLoS ONE 11:e0157357. https://doi.org/10.1371/journal.pone.0157357

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominoni DM, Goymann W, Helm B, Partecke J (2013a) Urban-like night illumination reduces melatonin release in European Blackbirds (Turdus merula): implications of City life for biological time-keeping of songbirds. Front Zool 10:1–11. https://doi.org/10.1186/1742-9994-10-60

Article  CAS  Google Scholar 

Dominoni DM, Quetting M, Partecke J (2013b) Artificial light at night advances avian reproductive physiology. Proc R Soc B 280:20123017. https://doi.org/10.1098/rspb.2012.3017

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominoni DM, de Jong M, van Oers K, O’Shaughnessy P, Blackburn G, Atema E, Helm B (2020) Artificial light at night shifts the circadian system but still leads to physiological disruption in a wild bird. https://doi.org/10.1101/2020.12.18.423473. bioRxiv, 2020-12

Dominoni DM, de Jong M, van Oers K, O’Shaughnessy P, Blackburn GJ, Atema E, Helm B (2022) Integrated molecular and behavioural data reveal deep circadian disruption in response to artificial light at night in male great Tits (Parus major). Sci Rep 12(1):1553. https://doi.org/10.1101/2020.12.18.423473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dupont J, Tesseraud S, Simon J (2009) Insulin signaling in chicken liver and muscle. Gen Comp Endocrinol 163(1–2):52–57. https://doi.org/10.1016/j.ygcen.2008.10.016

Article  CAS  PubMed  Google Scholar 

Falchi F, Cinzano P, Duriscoe D, Kyba CC, Elvidge CD, Baugh K, Furgoni R (2016) The new world atlas of artificial night Sky brightness. Sci Advan 2(6):e1600377. https://doi.org/10.1126/sciadv.160037

Article  Google Scholar 

Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ (2010) Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci USA 107:18664–18669. https://doi.org/10.1073/pnas.1008734107

Article  PubMed  PubMed Central  Google Scholar 

Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ (2013) Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythms 28:262–271. https://doi.org/10.1177/0748730413493862

Article  PubMed  PubMed Central  Google Scholar 

Gooley JJ, Chamberlain K, Smith KA, Khalsa SB, Rajaratnam SM, Van Reen E et al (2011) Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. J Clin Endocrinol Metab 96:E463–E472. https://doi.org/10.1210/jc.2010-2098

Article  CAS  PubMed  Google Scholar 

Hajduch E, Darakhshan F, Hundal HS (1998) Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia 41:821–828. https://doi.org/10.1007/s001250050993

Article  CAS  PubMed  Google Scholar 

Hoffmann J, Palme R, Eccard JA (2018) Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations. Environ Pollut 238:844–851. https://doi.org/10.1016/j.envpol.2018.03.097

Article  CAS  PubMed  Google Scholar 

Jensen-Urstad AP, Semenkovich CF (2012) Fatty acid synthase and liver triglyceride metabolism: housekeeper or messenger? Biochimica et biophysica acta (BBA)-Mol cell biol lipids. 1821(5):747–753. https://doi.org/10.1016/j.bbalip.2011.09.017

Kumar V, Kumar BS, Singh BP (1992) Photostimulation of blackheaded bunting: subjective interpretation of day and night depends upon both photophase contrast and light intensity. Physiol Behav 51(6):1213–1217. https://doi.org/10.1016/0031-9384(92)90311-O

Article  CAS  PubMed  Google Scholar 

Kumar V, Van’t Hof TJ, Gwinner E (2007) Circadian behavioral and melatonin rhythms in the European starling under light–dark cycles with steadily changing periods: evidence for close mutual coupling? Horm Behav 52(4):409–416. https://doi.org/10.1016/j.yhbeh.2007.04.011

Article  CAS  PubMed  Google Scholar 

Kumar A, Prabhat A, Kumar V, Bhardwaj SK (2023) Artificial night illumination disrupts sleep, and attenuates mood and learning in diurnal animals: evidence from behavior and gene expression studies in zebra finches. Photochem Photobiol Sci 22(10):2247–2257. https://doi.org/10.1007/s43630-023-00447-9

Article  CAS  PubMed  Google Scholar 

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2- ∆∆CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

Article  CAS  PubMed  Google Scholar 

Malek I, Haim A (2019) Bright artificial light at night is associated with increased body mass, poor reproductive success and compromised disease tolerance in Australian budgerigars (Melopsittacus undulatus). Integr Zool 14(6):589–603. https://doi.org/10.1111/1749-4877.12409

Article  PubMed  Google Scholar 

McGlade CL, Capilla-Lasheras P, Womack RJ, Helm B, Dominoni DM (2023) Experimental light at night explains differences in activity onset between urban and forest great Tits. Biol Lett 19(9):20230194. https://doi.org/10.1098/rsbl.2023.0194

Article  PubMed  PubMed Central  Google Scholar 

O’Reardon JP, Ringel BL, Dinges DF, Allison KC, Rogers NL, Martino NS, Stunkard AJ (2004) Circadian eating and sleeping patterns in the night eating syndrome. Obes Res 12:1789–1796. https://doi.org/10.1038/oby.2004.219

Article  PubMed  Google Scholar 

Ouyang JQ, de Jong M, van Grunsven RH, Matson KD, Haussmann MF, Meerlo P, Spoelstra K (2017) Restless roosts: light pollution affects behavior, sleep, and physiology in a free-living Songbird. Glob Change Biol 23(11):4987–4994.

Comments (0)

No login
gif