Visual physiology of Australian stingless bees

Baird E, Dacke M (2012) Visual flight control in naturalistic and artificial environments. J Comp Physiol A 198:869–876. https://doi.org/10.1007/s00359-012-0757-7

Article  Google Scholar 

Baird E, Dacke M (2016) Finding the gap: a brightness-based strategy for guidance in cluttered environments. Proc R Soc B 283:20152988. https://doi.org/10.1098/rspb.2015.2988

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baird E, Boeddeker N, Srinivasan MV (2021) The effect of optic flow cues on honeybee flight control in wind. Proc R Soc B 288:20203051. https://doi.org/10.1098/rspb.2020.3051

Article  PubMed  PubMed Central  Google Scholar 

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Soft 67:1-48

Boeddeker N, Hemmi JM (2010) Visual gaze control during peering flight manoeuvres in honeybees. Proc R Soc B 277:1209–1217. https://doi.org/10.1098/rspb.2009.1928

Article  PubMed  Google Scholar 

Burnett NP, Badger MA, Combes SA (2020) Wind and obstacle motion affect honeybee flight strategies in cluttered environments. J Exp Biol. https://doi.org/10.1242/jeb.222471

Article  PubMed  Google Scholar 

Capaldi EA, Smith AD, Osborne JL et al (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540

Article  CAS  PubMed  Google Scholar 

Cartwright BA, Collett TS (1987) Landmark maps for honeybees. Biol Cybern 57:85–93. https://doi.org/10.1007/BF00318718

Article  Google Scholar 

Chakravarthi A, Baird E, Dacke M, Kelber A (2016) Spatial vision in Bombus terrestris. Front Behav Neurosci 10:1–8. https://doi.org/10.3389/fnbeh.2016.00017

Article  Google Scholar 

Chakravarthi A, Rajus S, Kelber A et al (2018) Differences in spatial resolution and contrast sensitivity of flight control in the honeybees Apis cerana and Apis mellifera. J Exp Biol. https://doi.org/10.1242/jeb.184267

Article  PubMed  Google Scholar 

Collett TS, Hempel de Ibarra N (2023) An ‘instinct for learning’: the learning flights and walks of bees, wasps and ants from the 1850s to now. J Exp Biol. https://doi.org/10.1242/jeb.245278

Article  PubMed  PubMed Central  Google Scholar 

Collett M, Chittka L, Collett TS (2013) Spatial memory in insect navigation. Curr Biol 23:R789–R800. https://doi.org/10.1016/j.cub.2013.07.020

Article  CAS  PubMed  Google Scholar 

Da Silva D, Zucchi R, Kerr W (1972) Biological and behavioural aspects of the reproduction in some species of Melipona (Hymenoptera, Apidae, Meliponinae). Anim Behav 20:123–132

Article  PubMed  Google Scholar 

Dafni A, Lehrer M, Kevan PG (1997) Spatial flower parameters and insect spatial vision. Biol Rev 72:239–282. https://doi.org/10.1017/S0006323196005002

Article  Google Scholar 

Dyer AG, Rosa MGP, Reser DH (2008) Honeybees can recognise images of complex natural scenes for use as potential landmarks. J Exp Biol 211:1180–1186. https://doi.org/10.1242/jeb.016683

Article  PubMed  Google Scholar 

Dyer AG, Streinzer M, Garcia J (2016) Flower detection and acuity of the Australian native stingless bee Tetragonula carbonaria Sm. J Comp Physiol A 202:629–639

Article  CAS  Google Scholar 

Eckles MA, Roubik DW, Nieh JC (2012) A stingless bee can use visual odometry to estimate both height and distance. J Exp Biol 215:3155–3160. https://doi.org/10.1242/jeb.070540

Article  CAS  PubMed  Google Scholar 

Egelhaaf M (2023) Optic flow based spatial vision in insects. J Comp Physiol A 209:541–561. https://doi.org/10.1007/s00359-022-01610-w

Article  Google Scholar 

Everaars J (1979) The response of solitary bees to landscape configuration with focus on body size and nest-site preferences. Martin Luther University, PhD thesis

Frederiksen R, Wcislo WT, Warrant EJ (2008) Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 18:349–353. https://doi.org/10.1016/j.cub.2008.01.057

Article  CAS  PubMed  Google Scholar 

Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

Article  Google Scholar 

Goyal P, van Leeuwen JL, Muijres FT (2022) Bumblebees land rapidly by intermittently accelerating and decelerating toward the surface during visually guided landings. iScience 25:104265. https://doi.org/10.1016/j.isci.2022.104265

Article  PubMed Central  Google Scholar 

Greiner B, Ribi WA, Warrant EJ (2004) Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res 316:377–390. https://doi.org/10.1007/s00441-004-0883-9

Article  PubMed  Google Scholar 

Grüter C (2020) Stingless Bees: Their Behaviour, Ecology and Evolution. Springer, Switzerland

Halcroft MT (2012) Investigations into the biology, behaviour and phylogeny of a potential crop pollinator: the Australian stingless bee, Austroplebeia australis. University of Western Sydney, PhD thesis

Heard TA (1994) Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. J Apic Res 33:191–198. https://doi.org/10.1080/00218839.1994.11100870

Article  Google Scholar 

Heard TA (1999) The role of stingless bees in crop pollination. Ann Rev Entomol 44:183–206. https://doi.org/10.1146/annurev.ento.44.1.183

Article  CAS  Google Scholar 

Heard T, Dollin A (1998) In: Dollin A (ed) Crop pollination with Australian stingless bees. Australian Native Bee Research Centre, North Richmond, pp 1–17

Heard TA, Dollin AE (2000) Stingless bee keeping in Australia: snapshot of an infant industry. Bee World 81:116–125. https://doi.org/10.1080/0005772X.2000.11099481

Article  Google Scholar 

Heard T, Hendrikz J (1993) Factors influencing flight activity of colonies of the stingless bee Trigona carbonaria (Hymenoptera, Apidae). Aust J Zool 41:343–353. https://doi.org/10.1071/ZO9930343

Article  Google Scholar 

Hempel de Ibarra N, Vorobyev M (2009) Flower patterns are adapted for detection by bees. J Comp Physiol A 195:319–323. https://doi.org/10.1007/s00359-009-0412-0

Article  Google Scholar 

Hempel de Ibarra N, Vorobyev M, Menzel R (2014) Mechanisms, functions and ecology of colour vision in the honeybee. J Comp Physiol A 200:411–433. https://doi.org/10.1007/s00359-014-0915-1

Article  CAS  Google Scholar 

Hori S, Takeuchi H, Arikawa K et al (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A 192:691–700. https://doi.org/10.1007/s00359-005-0091-4

Article  Google Scholar 

Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol A 189:761–768. https://doi.org/10.1007/s00359-003-0448-5

Article  CAS  Google Scholar 

Ings T, Chittka L (2008) Speed-accuracy tradeoffs and false alarms in bee responses to cryptic predators. Curr Biol 18:1520–1524. https://doi.org/10.1016/j.cub.2008.07.074

Article  CAS  PubMed  Google Scholar 

Jezeera MA, Tichit P, Balamurali GS et al (2021) Spatial resolution and sensitivity of the eyes of the stingless bee, Tetragonula iridipennis. J Comp Physiol A 208:225–238

Article  Google Scholar 

Kelber A, Somanathan H (2019) Spatial vision and visually guided behavior in Apidae. Insects 10:418. https://doi.org/10.3390/insects10120418

Article  PubMed  PubMed Central  Google Scholar 

Kelber A, Zeil J (1990) A robust procedure for visual stabilisation of hovering flight position in guard bees of Trigona (Tetragonisca) angustula (Apidae, Meliponinae). J Comp Physiol A 167:569–577

Article  Google Scholar 

Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Zeitschr Naturforsch C 29:592–596. https://doi.org/10.1515/znc-1974-9-1023

Article  Google Scholar 

Koeniger N, Kurze C, Phiancharoen M, Koeniger G (2017) “Up” or “down” that makes the difference. How giant honeybees (Apis dorsata) see the world. PLoS One 12:e0185325. https://doi.org/10.1371/journal.pone.0185325

Article 

Comments (0)

No login
gif