Priemer DS, Montironi R, Wang L, Williamson SR, Lopez-Beltran A, Cheng L. Neuroendocrine tumors of the prostate: Emerging insights from molecular data and updates to the 2016 World Health Organization Classification. Endocr Pathol 2016; 27: 123-135.
Montironi R, Cimadamore A, Lopez-Beltran A, Scarpelli M, Cheng LMorphologic, Molecular and Clinical Features of Aggressive Variant Prostate Cancer. Cells. 2020;9(5): 1073.
Mohanty SK, Lobo A, Williamson SR, et al. Reporting Trends, Practices, and Resource Utilization in Neuroendocrine Tumours of the Prostate Gland: A Survey among Thirty-Nine Genitourinary Pathologists. Int J Surg Pathol. 2023;31(6):993-1005.
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med. 2019;9(2):a030593.
PubMed PubMed Central Google Scholar
Monn MF, Cheng L. Emerging trends in the evaluation and management of small cell prostate cancer: A clinical and molecular perspective. Expert Rev Anticancer Ther 2016; 16:1029-1037.
Epstein JI, Amin MB, Beltran H, et al. Proposed Morphologic Classification of Prostate Cancer with Neuroendocrine Differentiation. Am J Surg Pathol. 2014;38(6):756-767.
PubMed PubMed Central Google Scholar
Santoni M, Conti A, Burattini L, Berardi R, Scarpelli M, Cheng L. Neuroendocrine differentiation in prostate cancer: Novel morphological insights and future therapeutic perspectives. Biochim Biophys Acta 2014; 1846:630-637.
Mohanty SK, Lobo A, Cheng L. The 2022 revision of the World Health Organization classification of tumors of the urinary system and male genital organs: advances and challenges. Hum Pathol. 2023;136:123-143.
WHO Classification of Tumours Editorial Board. WHO Classification of Tumours: Urinary and Male Genital Tumours. 5th ed, Vol 8, Lyon (France): Internnational Agency for Rsearch on Cancer (IARC), 2022.
Monn MF, Montironi R, Lopez-Beltran A, Cheng L. Emerging Molecular Pathways and Targets in Neuroendocrine Prostate Cancer. Transl Cancer Res 5(S2): S282-S285, 2016.
Fine SW. Neuroendocrine tumors of the prostate. Mod Pathol. 2018;31(S1):S122-132.
Cheng L, MacLennan GT, Bostwick DG. Urologic Surgical Pathology, 5th edition, Elsevier, Philadelphia, PA, 2026.
Gopalan A. Treatment-related Neuroendocrine Prostate Carcinoma-Diagnostic and Molecular Correlates. Adv Anat Pathol. 2024;31(2):70-79.
Wang Y, Wang Y, Ci X et al. Molecular events in neuroendocrine prostate cancer development. Nat Rev Urol. 2021;18(10):581-596.
PubMed PubMed Central Google Scholar
Beltran H, Hruszkewycz A, Scher HI, et al. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin Cancer Res. 2019;25(23):6916-6924.
CAS PubMed PubMed Central Google Scholar
Pignon JC, Grisanzio C, Geng Y, et al. p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl Acad Sci USA. 2013;110(20):8105-8110.
CAS PubMed PubMed Central Google Scholar
Yao JL, Madeb R, Bourne P, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol. 2006;30(6):705-712.
Shehabeldin AN, Ro JY. Neuroendocrine tumors of genitourinary tract: Recent advances. Ann Diagn Pathol. 2019;42:48-58.
Scheble VJ, Braun M, Wilbertz T, et al. ERG rearrangement in small cell prostatic and lung cancer. Histopathology. 2010;56(7):937-943.
Wang L, Williamson SR, Zhang S, et al. Increased androgen receptor gene copy number is associated with TMPRSS2-ERG rearrangement in prostatic small cell carcinoma. Mol Carcinog. 2015;54(9):900-907.
Linja MJ, Savinainen KJ, Saramäki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 2001;61(9):3550-3555.
Faisal FA, Lotan TL. The Genomic and Molecular Pathology of Prostate Cancer: Clinical Implications for Diagnosis, Prognosis, and Therapy. Adv Anat Pathol. 2020 ;27(1):11-19.
Abdulfatah E, Fine SW, Lotan TL, et al. De novo neuroendocrine features in prostate cancer. Hum Pathol. 2022;127:112-122.
Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of PTEN-deficient tumorigenesis. Nature. 2005;436(7051):725-730.
CAS PubMed PubMed Central Google Scholar
Ku SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355(6320):78-83.
CAS PubMed PubMed Central Google Scholar
Mu P, Zhang M, Benelli WR, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53 and RB1 deficient prostate cancer. Science. 2017;355:84–88.
CAS PubMed PubMed Central Google Scholar
Akamatsu S, Inoue T, Ogawa O, et al. Clinical and molecular features of treatment-related neuroendocrine prostate cancer. Int J Urol. 2018;25(4):345-351.
Beltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1:487–495.
CAS PubMed PubMed Central Google Scholar
Beltran H, Oromendia C, Danila DC, et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin Cancer Res. 2019;25(1):43-51.
Park K, Chen Z, MacDonald TY, et al. Prostate cancer with Paneth cell-like neuroendocrine differentiation has recognizable histomorphology and harbors AURKA gene amplification. Hum Pathol. 2014; 45(10):2136–2143.
CAS PubMed PubMed Central Google Scholar
de Kouchkovsky I, Chan E, Schloss C, Poehlein C, Aggarwal R. Diagnosis and management of neuroendocrine prostate cancer. Prostate. 2024;84(5):426-440.
Chiaverotti T, Couto SS, Donjacour A, et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol. 2008;172(1):236-246.
CAS PubMed PubMed Central Google Scholar
Rudin CM, Poirier JT, Byers LA, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19(5):289-297.
CAS PubMed PubMed Central Google Scholar
Rodarte KE, Nir Heyman S, Guo L et al. Neuroendocrine Differentiation in Prostate Cancer Requires ASCL1. Cancer Res. 2024;84(21):3522-3537.
CAS PubMed PubMed Central Google Scholar
Nouruzi S, Ganguli D, Tabrizian N et al. ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun. 2022;13(1):2282.
CAS PubMed PubMed Central Google Scholar
Yao J, Bergsland E, Aggarwal R, et al. DLL3 as an Emerging Target for the Treatment of Neuroendocrine Neoplasms. Oncologist. 2022;27(11):940-951.
PubMed PubMed Central Google Scholar
Lozada JR, Elliott A, Evans MG, et al. Expression Patterns of DLL3 across Neuroendocrine and Non-neuroendocrine Neoplasms Reveal Broad Opportunities for Therapeutic Targeting. Cancer Res Commun. 2025;5(2):318-326.
CAS PubMed PubMed Central Google Scholar
Puca L, Gayvert K, Sailer V, et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med. 2019;11:1–24.
Aggarwal RR, Aparicio A, Heidenreich A, et al. Phase 1b study of AMG 757, a half-life extended bispecific T-cell engager (HLE BiTEimmune-oncology therapy) targeting DLL3, in de novo or treatment emergent neuroendocrine prostate cancer (NEPC). J Clin Oncol. 2021;39:TPS5100-TPS5100.
Zhao SG, Chen WS, Li H, et al. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020;52(8):778-789.
CAS PubMed PubMed Central Google Scholar
Dardenne E, Beltran H, Benelli M, et al. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell. 2016;30(4):563-577.
Comments (0)